Bouquets of circles for lamination languages and complexities
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 4, pp. 391-418
Cet article a éte moissonné depuis la source Numdam
Laminations are classic sets of disjoint and non-self-crossing curves on surfaces. Lamination languages are languages of two-way infinite words which code laminations by using associated labeled embedded graphs, and which are subshifts. Here, we characterize the possible exact affine factor complexities of these languages through bouquets of circles, i.e. graphs made of one vertex, as representative coding graphs. We also show how to build families of laminations together with corresponding lamination languages covering all the possible exact affine complexities.
DOI :
10.1051/ita/2014016
Classification :
14Q05, 37B10, 37F20, 57R30, 68R15, 68Q45, 68R10
Keywords: curves, laminations on surfaces, symbolic dynamics, shifts, factor complexity, embedded graphs, train-tracks, Rauzy graphs, substitutions, spirals
Keywords: curves, laminations on surfaces, symbolic dynamics, shifts, factor complexity, embedded graphs, train-tracks, Rauzy graphs, substitutions, spirals
@article{ITA_2014__48_4_391_0,
author = {Narbel, Philippe},
title = {Bouquets of circles for lamination languages and complexities},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {391--418},
year = {2014},
publisher = {EDP-Sciences},
volume = {48},
number = {4},
doi = {10.1051/ita/2014016},
mrnumber = {3302494},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2014016/}
}
TY - JOUR AU - Narbel, Philippe TI - Bouquets of circles for lamination languages and complexities JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2014 SP - 391 EP - 418 VL - 48 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2014016/ DO - 10.1051/ita/2014016 LA - en ID - ITA_2014__48_4_391_0 ER -
%0 Journal Article %A Narbel, Philippe %T Bouquets of circles for lamination languages and complexities %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2014 %P 391-418 %V 48 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2014016/ %R 10.1051/ita/2014016 %G en %F ITA_2014__48_4_391_0
Narbel, Philippe. Bouquets of circles for lamination languages and complexities. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 4, pp. 391-418. doi: 10.1051/ita/2014016
Cité par Sources :