Voir la notice de l'article provenant de la source Numdam
Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux-Rauzy substitutions.
@article{ITA_2014__48_3_249_0, author = {Berth\'e, Val\'erie and Jolivet, Timo and Siegel, Anne}, title = {Connectedness of fractals associated with {Arnoux-Rauzy} substitutions}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {249--266}, publisher = {EDP-Sciences}, volume = {48}, number = {3}, year = {2014}, doi = {10.1051/ita/2014008}, mrnumber = {3302487}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2014008/} }
TY - JOUR AU - Berthé, Valérie AU - Jolivet, Timo AU - Siegel, Anne TI - Connectedness of fractals associated with Arnoux-Rauzy substitutions JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2014 SP - 249 EP - 266 VL - 48 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2014008/ DO - 10.1051/ita/2014008 LA - en ID - ITA_2014__48_3_249_0 ER -
%0 Journal Article %A Berthé, Valérie %A Jolivet, Timo %A Siegel, Anne %T Connectedness of fractals associated with Arnoux-Rauzy substitutions %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2014 %P 249-266 %V 48 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2014008/ %R 10.1051/ita/2014008 %G en %F ITA_2014__48_3_249_0
Berthé, Valérie; Jolivet, Timo; Siegel, Anne. Connectedness of fractals associated with Arnoux-Rauzy substitutions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 3, pp. 249-266. doi : 10.1051/ita/2014008. http://geodesic.mathdoc.fr/articles/10.1051/ita/2014008/
[1] Rational numbers with purely periodic β-expansion. Bull. London Math. Soc. 42 (2010) 538-552. | Zbl | MR
, , and ,[2] Symbolic dynamics and Markov partitions. Bull. Amer. Math. Soc. (N.S.) 35 (1998) 1-56. | Zbl | MR
,[3] Connectedness of number theoretic tilings. Discrete Math. Theor. Comput. Sci. 7 (2005) 269-312 (electronic). | Zbl | MR
and ,[4] Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math. 155 (2008) 377-419. | Zbl | MR
, , and ,[5] Représentation géométrique de suites de complexit*error*é2n + 1. Bull. Soc. Math. France 119 (1991) 199-215. | Zbl | MR | mathdoc-id
and ,[6] Functional stepped surfaces, flips, and generalized substitutions. Theoret. Comput. Sci. 380 (2007) 251-265. | Zbl | MR
, , and ,[7] Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier 52 (2002) 305-349. | Zbl | MR | mathdoc-id
, and ,[8] Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci. 319 (2004) 145-176. | Zbl | MR
, and ,[9] Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181-207. | Zbl | MR
and ,[10] Geometric theory of unimodular Pisot substitutions. Amer. J. Math. 128 (2006) 1219-1282. | Zbl | MR
and ,[11] The branch locus for one-dimensional Pisot tiling spaces. Fund. Math. 204 (2009) 215-240. | Zbl | MR
, and ,[12] Pure discrete spectrum in substitution tiling spaces. Discrete Contin. Dyn. Syst. 33 (2013) 579-597. | Zbl | MR
, and ,[13] Selfdual substitutions in dimension one, European J. Combin. 33 (2012) 981-1000. | Zbl | MR
, , and ,[14] Combinatorics, automata and number theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010). | Zbl | MR
and ,[15] Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, Algebraic and topological dynamics, Contemp. Math., vol. 385. Amer. Math. Soc. Providence, RI (2005) 333-364. | Zbl | MR
, and ,[16] Substitutive Arnoux-Rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory 7 (2012) 173-197. | MR
, and ,[17] A study of Jacobi-Perron boundary words for the generation of discrete planes. Theoret. Comput. Sci. 502 (2013) 118-142. | Zbl | MR
, , and ,[18] Markov partitions are not smooth. Proc. Amer. Math. Soc. 71 (1978) 130-132. | Zbl | MR
,[19] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, revised ed., Lect. Notes Math., vol. 470. With a preface by David Ruelle, edited by Jean-René Chazottes. Springer-Verlag, Berlin (2008). | Zbl | MR
,[20] Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77-89. | Zbl | MR
,[21] Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353 (2001) 5121-5144. | Zbl | MR
and ,[22] Fonctions de récurrence des suites d'Arnoux-Rauzy et réponse à une question de Morse et Hedlund. Ann. Inst. Fourier Grenoble 56 (2006) 2249-2270. | Zbl | MR | mathdoc-id
and ,[23] Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier 58 (2008) 1983-2005. | Zbl | MR | mathdoc-id
, and ,[24] Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. | Zbl | MR
, and ,[25] Decomposition theorem on invertible substitutions. Osaka J. Math. 35 (1998) 821-834. | Zbl | MR
and ,[26] Multidimensional Sturmian sequences and generalized substitutions. Internat. J. Found. Comput. Sci. 17 (2006) 575-599. | Zbl | MR
,[27] Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognition 42 (2009) 2229-2238. | Zbl | MR
,[28] Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux 16 (2004) 125-149. | Zbl | MR | mathdoc-id
and ,[29] Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith. 124 (2006) 1-15. | Zbl | MR
and ,[30] Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms. Tokyo J. Math. 16 (1993) 441-472. | Zbl | MR
and ,[31] Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math. 17 (1994) 33-58. | Zbl | MR
and ,[32] Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153 (2006) 129-155. | Zbl | MR
and ,[33] An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995). | Zbl | MR
and ,[34] Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1997). | Zbl | MR
,[35] Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95 (2000) 195-224. | Zbl | MR
,[36] Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | MR | JFM
and ,[37] Numeration systems and Markov partitions from self-similar tilings. Trans. Amer. Math. Soc. 351 (1999) 3315-3349. | Zbl | MR
,[38] Substitutions in dynamics, arithmetics and combinatorics, Lect. Notes Math., vol. 1794. Springer-Verlag, Berlin (2002). | MR
,[39] Substitution dynamical systems-spectral analysis, second edition, Lect. Notes Math., vol. 1294. Springer-Verlag, Berlin (2010). | Zbl | MR
,[40] Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147-178. | Zbl | MR | mathdoc-id
,[41] Géométrie discrète, calculs en nombres entiers et algorithmes, Ph.D. thesis. Université Louis Pasteur, Strasbourg (1991). | Zbl
,[42] Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type pisot, Ph.D. thesis. Université de la Méditerranée (2000).
,[43] Topological properties of Rauzy fractal. Mém. Soc. Math. Fr. To appear (2010). | Zbl | MR | mathdoc-id
and ,[44] The structure of invertible substitutions on a three-letter alphabet. Adv. in Appl. Math. 32 (2004) 736-753. | Zbl | MR
, and ,[45] Groups, tilings, and finite state automata. AMS Colloquium lecture notes. Unpublished manuscript (1989).
,Cité par Sources :