Balances and abelian complexity of a certain class of infinite ternary words
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 3, pp. 313-337

Voir la notice de l'article provenant de la source Numdam

A word u defined over an alphabet 𝒜 is c-balanced (c ) if for all pairs of factors v, w of u of the same length and for all letters a 𝒜, the difference between the number of letters a in v and w is less or equal to c. In this paper we consider a ternary alphabet 𝒜 = {L, S, M} and a class of substitutions φ p defined by φ p (L) = LpS, φ p (S) = M, φ p (M) = Lp-1S where p > 1. We prove that the fixed point of φ p , formally written as φ p (L), is 3-balanced and that its abelian complexity is bounded above by the value 7, regardless of the value of p. We also show that both these bounds are optimal, i.e. they cannot be improved.

DOI : 10.1051/ita/2010017
Classification : 68R15
Keywords: balance property, abelian complexity, substitution, ternary word
@article{ITA_2010__44_3_313_0,
     author = {Turek, Ond\v{r}ej},
     title = {Balances and abelian complexity of a certain class of infinite ternary words},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {313--337},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {3},
     year = {2010},
     doi = {10.1051/ita/2010017},
     mrnumber = {2761522},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2010017/}
}
TY  - JOUR
AU  - Turek, Ondřej
TI  - Balances and abelian complexity of a certain class of infinite ternary words
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2010
SP  - 313
EP  - 337
VL  - 44
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita/2010017/
DO  - 10.1051/ita/2010017
LA  - en
ID  - ITA_2010__44_3_313_0
ER  - 
%0 Journal Article
%A Turek, Ondřej
%T Balances and abelian complexity of a certain class of infinite ternary words
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2010
%P 313-337
%V 44
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita/2010017/
%R 10.1051/ita/2010017
%G en
%F ITA_2010__44_3_313_0
Turek, Ondřej. Balances and abelian complexity of a certain class of infinite ternary words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 3, pp. 313-337. doi: 10.1051/ita/2010017

Cité par Sources :