Dejean’s conjecture holds for 𝖭27
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 4, pp. 775-778.

Voir la notice de l'article provenant de la source Numdam

We show that Dejean’s conjecture holds for n27. This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.

DOI : 10.1051/ita/2009017
Classification : 68R15
Keywords: Dejean's conjecture, repetitions in words, fractional exponent
@article{ITA_2009__43_4_775_0,
     author = {Currie, James and Rampersad, Narad},
     title = {Dejean{\textquoteright}s conjecture holds for $\sf {N\ge 27}$},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {775--778},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {4},
     year = {2009},
     doi = {10.1051/ita/2009017},
     mrnumber = {2589992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2009017/}
}
TY  - JOUR
AU  - Currie, James
AU  - Rampersad, Narad
TI  - Dejean’s conjecture holds for $\sf {N\ge 27}$
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2009
SP  - 775
EP  - 778
VL  - 43
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita/2009017/
DO  - 10.1051/ita/2009017
LA  - en
ID  - ITA_2009__43_4_775_0
ER  - 
%0 Journal Article
%A Currie, James
%A Rampersad, Narad
%T Dejean’s conjecture holds for $\sf {N\ge 27}$
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2009
%P 775-778
%V 43
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita/2009017/
%R 10.1051/ita/2009017
%G en
%F ITA_2009__43_4_775_0
Currie, James; Rampersad, Narad. Dejean’s conjecture holds for $\sf {N\ge 27}$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 4, pp. 775-778. doi : 10.1051/ita/2009017. http://geodesic.mathdoc.fr/articles/10.1051/ita/2009017/

[1] F.J. Brandenburg, Uniformly growing k-th powerfree homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | Zbl | MR

[2] J. Brinkhuis, Non-repetitive sequences on three symbols. Quart. J. Math. Oxford 34 (1983) 145-149. | Zbl | MR

[3] A. Carpi, On Dejean's conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | Zbl | MR

[4] J.D. Currie and N. Rampersad, Dejean’s conjecture holds for n30. Theoret. Comput. Sci. 410 (2009) 2885-2888. | Zbl | MR

[5] J.D. Currie, N. Rampersad, A proof of Dejean's conjecture, http://arxiv.org/pdf/0905.1129v3. | Zbl

[6] F. Dejean, Sur un théorème de Thue. J. Combin. Theory Ser. A 13 (1972) 90-99. | Zbl | MR

[7] L. Ilie, P. Ochem and J. Shallit, A generalization of repetition threshold. Theoret. Comput. Sci. 345 (2005) 359-369. | Zbl | MR

[8] D. Krieger, On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70-88. | Zbl | MR

[9] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading (1983). | Zbl | MR

[10] F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199-204. | Zbl | MR | mathdoc-id

[11] M. Mohammad-Noori and J.D. Currie, Dejean's conjecture and Sturmian words. Eur. J. Combin. 28 (2007) 876-890. | Zbl | MR

[12] J. Moulin Ollagnier, Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci. 95 (1992) 187-205. | Zbl | MR

[13] J.-J. Pansiot, À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297-311. | Zbl | MR

[14] M. Rao, Last cases of Dejean's Conjecture, http://www.labri.fr/perso/rao/publi/dejean.ps.

[15] A. Thue, Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 1-22. | JFM

[16] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 1-67. | JFM

Cité par Sources :