Voir la notice de l'article provenant de la source Numdam
We prove that every sturmian word has infinitely many prefixes of the form where and In passing, we give a very simple proof of the known fact that every sturmian word begins in arbitrarily long squares.
@article{ITA_2009__43_3_615_0, author = {Dubickas, Art\={u}ras}, title = {Squares and cubes in sturmian sequences}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {615--624}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/ita/2009005}, mrnumber = {2541133}, zbl = {1176.68150}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2009005/} }
TY - JOUR AU - Dubickas, Artūras TI - Squares and cubes in sturmian sequences JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 615 EP - 624 VL - 43 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2009005/ DO - 10.1051/ita/2009005 LA - en ID - ITA_2009__43_3_615_0 ER -
%0 Journal Article %A Dubickas, Artūras %T Squares and cubes in sturmian sequences %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 615-624 %V 43 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2009005/ %R 10.1051/ita/2009005 %G en %F ITA_2009__43_3_615_0
Dubickas, Artūras. Squares and cubes in sturmian sequences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 3, pp. 615-624. doi: 10.1051/ita/2009005
Cité par Sources :