Voir la notice de l'article provenant de la source Numdam
We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under L1 constraints.
@article{COCV_2010__16_1_194_0, author = {Varchon, Nicolas}, title = {Optimal measures for the fundamental gap of {Schr\"odinger} operators}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {194--205}, publisher = {EDP-Sciences}, volume = {16}, number = {1}, year = {2010}, doi = {10.1051/cocv:2008069}, mrnumber = {2598095}, zbl = {1183.35092}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/} }
TY - JOUR AU - Varchon, Nicolas TI - Optimal measures for the fundamental gap of Schrödinger operators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 194 EP - 205 VL - 16 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/ DO - 10.1051/cocv:2008069 LA - en ID - COCV_2010__16_1_194_0 ER -
%0 Journal Article %A Varchon, Nicolas %T Optimal measures for the fundamental gap of Schrödinger operators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 194-205 %V 16 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/ %R 10.1051/cocv:2008069 %G en %F COCV_2010__16_1_194_0
Varchon, Nicolas. Optimal measures for the fundamental gap of Schrödinger operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205. doi : 10.1051/cocv:2008069. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/
[1] On minimal and maximal eigenvalue gaps and their causes. Pacific J. Math. 147 (1991) 1-24. | Zbl
, and ,[2] Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65. Birkhäuser, Basel, Boston (2005). | Zbl
and ,[3] Strict monotonicity of the second eigenvalue of the Laplace operator on relaxed domain. Bull. Appl. Comp. Math. 1510-1566 (1998) 115-122.
and ,[4] Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985-996. | Zbl
and ,[5] Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. | Zbl
and ,[6] Optimal measures for elliptic problems. Annali Mat. Pur. Appl. 185 (2006) 207-221.
, and ,[7] Methods of Mathematical Physics. Interscience Publishers (1953). | Zbl
and ,[8] Γ-convergence and µ-capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) 423-464. | Zbl | mathdoc-id
,[9] An introduction to Γ-convergence. Birkhäuser, Boston (1993). | Zbl
,[10] Wiener's criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15-63. | Zbl
and ,[11] Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | Zbl
and ,[12] Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel, Boston, Berlin (2006). | Zbl
,[13] Perturbation Theory for Linear Operators. Springer-Verlag (1980). | Zbl
,[14] Optimal measures for nonlinear cost functionals. Appl. Mat. Opt. 54 (2006) 205-221. | Zbl
,[15] Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | Zbl
,Cité par Sources :