Optimal measures for the fundamental gap of Schrödinger operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205.

Voir la notice de l'article provenant de la source Numdam

We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under L1 constraints.

DOI : 10.1051/cocv:2008069
Classification : 35J10, 49K20, 35J20, 35B20
Keywords: Schrödinger operator, eigenvalue problems, measure theory, shape optimization
@article{COCV_2010__16_1_194_0,
     author = {Varchon, Nicolas},
     title = {Optimal measures for the fundamental gap of {Schr\"odinger} operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {194--205},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {1},
     year = {2010},
     doi = {10.1051/cocv:2008069},
     mrnumber = {2598095},
     zbl = {1183.35092},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/}
}
TY  - JOUR
AU  - Varchon, Nicolas
TI  - Optimal measures for the fundamental gap of Schrödinger operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 194
EP  - 205
VL  - 16
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/
DO  - 10.1051/cocv:2008069
LA  - en
ID  - COCV_2010__16_1_194_0
ER  - 
%0 Journal Article
%A Varchon, Nicolas
%T Optimal measures for the fundamental gap of Schrödinger operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 194-205
%V 16
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/
%R 10.1051/cocv:2008069
%G en
%F COCV_2010__16_1_194_0
Varchon, Nicolas. Optimal measures for the fundamental gap of Schrödinger operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205. doi : 10.1051/cocv:2008069. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/

[1] M.S. Ashbaugh, E.M. Harrell and R. Svirsky, On minimal and maximal eigenvalue gaps and their causes. Pacific J. Math. 147 (1991) 1-24. | Zbl

[2] D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65. Birkhäuser, Basel, Boston (2005). | Zbl

[3] D. Bucur and T. Chatelain, Strict monotonicity of the second eigenvalue of the Laplace operator on relaxed domain. Bull. Appl. Comp. Math. 1510-1566 (1998) 115-122.

[4] D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985-996. | Zbl

[5] G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. | Zbl

[6] G. Buttazzo, N. Varchon and H. Zoubairi, Optimal measures for elliptic problems. Annali Mat. Pur. Appl. 185 (2006) 207-221.

[7] R. Courant and D. Hilbert, Methods of Mathematical Physics. Interscience Publishers (1953). | Zbl

[8] G. Dal Maso, Γ-convergence and µ-capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) 423-464. | Zbl | mathdoc-id

[9] G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993). | Zbl

[10] G. Dal Maso and U. Mosco, Wiener's criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15-63. | Zbl

[11] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | Zbl

[12] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel, Boston, Berlin (2006). | Zbl

[13] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag (1980). | Zbl

[14] N. Varchon, Optimal measures for nonlinear cost functionals. Appl. Mat. Opt. 54 (2006) 205-221. | Zbl

[15] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | Zbl

Cité par Sources :