Optimal measures for the fundamental gap of Schrödinger operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205
Voir la notice de l'article provenant de la source Numdam
We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under L1 constraints.
DOI :
10.1051/cocv:2008069
Classification :
35J10, 49K20, 35J20, 35B20
Keywords: Schrödinger operator, eigenvalue problems, measure theory, shape optimization
Keywords: Schrödinger operator, eigenvalue problems, measure theory, shape optimization
@article{COCV_2010__16_1_194_0,
author = {Varchon, Nicolas},
title = {Optimal measures for the fundamental gap of {Schr\"odinger} operators},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {194--205},
publisher = {EDP-Sciences},
volume = {16},
number = {1},
year = {2010},
doi = {10.1051/cocv:2008069},
mrnumber = {2598095},
zbl = {1183.35092},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/}
}
TY - JOUR AU - Varchon, Nicolas TI - Optimal measures for the fundamental gap of Schrödinger operators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 194 EP - 205 VL - 16 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/ DO - 10.1051/cocv:2008069 LA - en ID - COCV_2010__16_1_194_0 ER -
%0 Journal Article %A Varchon, Nicolas %T Optimal measures for the fundamental gap of Schrödinger operators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 194-205 %V 16 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008069/ %R 10.1051/cocv:2008069 %G en %F COCV_2010__16_1_194_0
Varchon, Nicolas. Optimal measures for the fundamental gap of Schrödinger operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205. doi: 10.1051/cocv:2008069
Cité par Sources :
