Voir la notice de l'article provenant de la source Numdam
An a priori Campanato type regularity condition is established for a class of W1X local minimisers of the general variational integral where is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space , µ < n, Campanato space and the space of bounded mean oscillation . The admissible maps are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.
@article{COCV_2010__16_1_111_0, author = {Dodd, Thomas J.}, title = {An a priori {Campanato} type regularity condition for local minimisers in the calculus of variations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {111--131}, publisher = {EDP-Sciences}, volume = {16}, number = {1}, year = {2010}, doi = {10.1051/cocv:2008066}, mrnumber = {2598091}, zbl = {1183.49037}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008066/} }
TY - JOUR AU - Dodd, Thomas J. TI - An a priori Campanato type regularity condition for local minimisers in the calculus of variations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 111 EP - 131 VL - 16 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008066/ DO - 10.1051/cocv:2008066 LA - en ID - COCV_2010__16_1_111_0 ER -
%0 Journal Article %A Dodd, Thomas J. %T An a priori Campanato type regularity condition for local minimisers in the calculus of variations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 111-131 %V 16 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008066/ %R 10.1051/cocv:2008066 %G en %F COCV_2010__16_1_111_0
Dodd, Thomas J. An a priori Campanato type regularity condition for local minimisers in the calculus of variations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 111-131. doi: 10.1051/cocv:2008066
Cité par Sources :