Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 576-598

Voir la notice de l'article provenant de la source Numdam

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.

DOI : 10.1051/cocv:2008041
Classification : 49Q20, 49J45, 35B38, 35J60
Keywords: Mumford-Shah functional, Ambrosio-Tortorelli functional, gamma-convergence, critical points, brittle fracture
@article{COCV_2009__15_3_576_0,
     author = {Francfort, Gilles A. and Le, Nam Q. and Serfaty, Sylvia},
     title = {Critical points of {Ambrosio-Tortorelli} converge to critical points of {Mumford-Shah} in the one-dimensional {Dirichlet} case},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {576--598},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {3},
     year = {2009},
     doi = {10.1051/cocv:2008041},
     mrnumber = {2542574},
     zbl = {1168.49041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008041/}
}
TY  - JOUR
AU  - Francfort, Gilles A.
AU  - Le, Nam Q.
AU  - Serfaty, Sylvia
TI  - Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 576
EP  - 598
VL  - 15
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008041/
DO  - 10.1051/cocv:2008041
LA  - en
ID  - COCV_2009__15_3_576_0
ER  - 
%0 Journal Article
%A Francfort, Gilles A.
%A Le, Nam Q.
%A Serfaty, Sylvia
%T Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 576-598
%V 15
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008041/
%R 10.1051/cocv:2008041
%G en
%F COCV_2009__15_3_576_0
Francfort, Gilles A.; Le, Nam Q.; Serfaty, Sylvia. Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 576-598. doi: 10.1051/cocv:2008041

Cité par Sources :