Voir la notice de l'article provenant de la source Numdam
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
@article{COCV_2009__15_3_576_0, author = {Francfort, Gilles A. and Le, Nam Q. and Serfaty, Sylvia}, title = {Critical points of {Ambrosio-Tortorelli} converge to critical points of {Mumford-Shah} in the one-dimensional {Dirichlet} case}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {576--598}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {2009}, doi = {10.1051/cocv:2008041}, mrnumber = {2542574}, zbl = {1168.49041}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008041/} }
TY - JOUR AU - Francfort, Gilles A. AU - Le, Nam Q. AU - Serfaty, Sylvia TI - Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 576 EP - 598 VL - 15 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008041/ DO - 10.1051/cocv:2008041 LA - en ID - COCV_2009__15_3_576_0 ER -
%0 Journal Article %A Francfort, Gilles A. %A Le, Nam Q. %A Serfaty, Sylvia %T Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 576-598 %V 15 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008041/ %R 10.1051/cocv:2008041 %G en %F COCV_2009__15_3_576_0
Francfort, Gilles A.; Le, Nam Q.; Serfaty, Sylvia. Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 576-598. doi: 10.1051/cocv:2008041
Cité par Sources :