Voir la notice de l'article provenant de la source Numdam
Let where are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the -well problem with surface energy. Let , be a convex polytopal region. Define
@article{COCV_2009__15_2_322_0, author = {Lorent, Andrew}, title = {The regularisation of the $N$-well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {322--366}, publisher = {EDP-Sciences}, volume = {15}, number = {2}, year = {2009}, doi = {10.1051/cocv:2008039}, mrnumber = {2513089}, zbl = {1161.74044}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008039/} }
TY - JOUR AU - Lorent, Andrew TI - The regularisation of the $N$-well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 322 EP - 366 VL - 15 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008039/ DO - 10.1051/cocv:2008039 LA - en ID - COCV_2009__15_2_322_0 ER -
%0 Journal Article %A Lorent, Andrew %T The regularisation of the $N$-well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 322-366 %V 15 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008039/ %R 10.1051/cocv:2008039 %G en %F COCV_2009__15_2_322_0
Lorent, Andrew. The regularisation of the $N$-well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 322-366. doi: 10.1051/cocv:2008039
Cité par Sources :