Voir la notice de l'article provenant de la source Numdam
In this note we provide a new geometric lower bound on the so-called Grad’s number of a domain in terms of how far is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.
@article{COCV_2009__15_3_569_0, author = {Figalli, Alessio}, title = {A geometric lower bound on {Grad's} number}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {569--575}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {2009}, doi = {10.1051/cocv:2008032}, mrnumber = {2542573}, zbl = {1167.49040}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008032/} }
TY - JOUR AU - Figalli, Alessio TI - A geometric lower bound on Grad's number JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 569 EP - 575 VL - 15 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008032/ DO - 10.1051/cocv:2008032 LA - en ID - COCV_2009__15_3_569_0 ER -
%0 Journal Article %A Figalli, Alessio %T A geometric lower bound on Grad's number %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 569-575 %V 15 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008032/ %R 10.1051/cocv:2008032 %G en %F COCV_2009__15_3_569_0
Figalli, Alessio. A geometric lower bound on Grad's number. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 569-575. doi : 10.1051/cocv:2008032. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008032/
[1] Functions of bounded variation and free discontinuity problems. The Clarendon Press, Oxford University Press, New York (2000). | Zbl | MR
, and ,[2] On a variant of Korn's inequality arising in statistical mechanics. ESAIM: COCV 8 (2002) 603-619. | Zbl | MR | mathdoc-id
and ,[3] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159 (2005) 245-316. | Zbl | MR
and ,[4] A mass transportation approach to quantitative isoperimetric inequalities. Preprint (2007).
, and ,[5] Hypocoercivity. Memoirs Amer. Math. Soc. (to appear). | MR
,[6] Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics 120. Springer-Verlag, New York (1989). | Zbl | MR
,Cité par Sources :