Voir la notice de l'article provenant de la source Numdam
In this note we provide a new geometric lower bound on the so-called Grad’s number of a domain in terms of how far is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.
@article{COCV_2009__15_3_569_0, author = {Figalli, Alessio}, title = {A geometric lower bound on {Grad's} number}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {569--575}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {2009}, doi = {10.1051/cocv:2008032}, mrnumber = {2542573}, zbl = {1167.49040}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008032/} }
TY - JOUR AU - Figalli, Alessio TI - A geometric lower bound on Grad's number JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 569 EP - 575 VL - 15 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008032/ DO - 10.1051/cocv:2008032 LA - en ID - COCV_2009__15_3_569_0 ER -
%0 Journal Article %A Figalli, Alessio %T A geometric lower bound on Grad's number %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 569-575 %V 15 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008032/ %R 10.1051/cocv:2008032 %G en %F COCV_2009__15_3_569_0
Figalli, Alessio. A geometric lower bound on Grad's number. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 569-575. doi: 10.1051/cocv:2008032
Cité par Sources :