Voir la notice de l'article provenant de la source Numdam
We study hamiltonian systems which generate extremal flows of regular variational problems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a system implies the existence of a global smooth optimal synthesis for the infinite horizon problem. We also show that in the euclidean case negativity of the generalized curvature is a consequence of the convexity of the lagrangian with respect to the pair of arguments. Finally, we give a generic classification for 1-dimensional problems.
@article{COCV_2009__15_1_173_0, author = {Agrachev, Andrei A. and Chittaro, Francesca C.}, title = {Smooth optimal synthesis for infinite horizon variational problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {173--188}, publisher = {EDP-Sciences}, volume = {15}, number = {1}, year = {2009}, doi = {10.1051/cocv:2008029}, mrnumber = {2488574}, zbl = {1158.49039}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008029/} }
TY - JOUR AU - Agrachev, Andrei A. AU - Chittaro, Francesca C. TI - Smooth optimal synthesis for infinite horizon variational problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 173 EP - 188 VL - 15 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008029/ DO - 10.1051/cocv:2008029 LA - en ID - COCV_2009__15_1_173_0 ER -
%0 Journal Article %A Agrachev, Andrei A. %A Chittaro, Francesca C. %T Smooth optimal synthesis for infinite horizon variational problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 173-188 %V 15 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008029/ %R 10.1051/cocv:2008029 %G en %F COCV_2009__15_1_173_0
Agrachev, Andrei A.; Chittaro, Francesca C. Smooth optimal synthesis for infinite horizon variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 1, pp. 173-188. doi : 10.1051/cocv:2008029. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008029/
[1] Geometry of Optimal Control Problem and Hamiltonian Systems, in Nonlinear and Optimal Control Theory, Lecture Notes in Mathematics 1932, Fondazione C.I.M.E., Firenze, Springer-Verlag (2008). | Zbl | MR
,[2] Feedback-invariant optimal control theory and differential geometry, I. Regular extremals. J. Dyn. Contr. Syst. 3 (1997) 343-389. | Zbl | MR
and ,[3] Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). | Zbl | MR
and ,[4] Optimal control problems on stratified domains. Netw. Heterog. Media 2 (2007) 313-331. | Zbl | MR
and ,[5] One-dimensional variational problems: an introduction. Oxford University Press (1998). | Zbl | MR
, and ,[6] Optimization theory and applications. Springer-Verlag (1983). | Zbl | MR
,[7] Principles of Optimal Control Theory. Plenum Press, New York (1978). | Zbl | MR
,[8] Introduction to Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995). | Zbl | MR
and ,[9] Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics. Appl. Math. Optim. 41 (2000) 237-254. | Zbl | MR
and ,[10] Magnetic flows and Gaussian thermostats on manifolds of negative curvature. Fund. Math. 163 (2000) 177-191. | Zbl | MR
,Cité par Sources :