Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 295-321

Voir la notice de l'article provenant de la source Numdam

In this paper we study the lower semicontinuous envelope with respect to the L 1 -topology of a class of isotropic functionals with linear growth defined on mappings from the n-dimensional ball into N that are constrained to take values into a smooth submanifold 𝒴 of N .

DOI : 10.1051/cocv:2008026
Classification : 49J45, 49Q20
Keywords: relaxation, manifold constrain, BV functions
@article{COCV_2009__15_2_295_0,
     author = {Mucci, Domenico},
     title = {Relaxation of isotropic functionals with linear growth defined on manifold constrained {Sobolev} mappings},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {295--321},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {2},
     year = {2009},
     doi = {10.1051/cocv:2008026},
     mrnumber = {2513088},
     zbl = {1167.49015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008026/}
}
TY  - JOUR
AU  - Mucci, Domenico
TI  - Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 295
EP  - 321
VL  - 15
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008026/
DO  - 10.1051/cocv:2008026
LA  - en
ID  - COCV_2009__15_2_295_0
ER  - 
%0 Journal Article
%A Mucci, Domenico
%T Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 295-321
%V 15
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008026/
%R 10.1051/cocv:2008026
%G en
%F COCV_2009__15_2_295_0
Mucci, Domenico. Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 295-321. doi: 10.1051/cocv:2008026

Cité par Sources :