Unique continuation property near a corner and its fluid-structure controllability consequences
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 279-294

Voir la notice de l'article provenant de la source Numdam

We study a non standard unique continuation property for the biharmonic spectral problem Δ 2 w=-λΔw in a 2D corner with homogeneous Dirichlet boundary conditions and a supplementary third order boundary condition on one side of the corner. We prove that if the corner has an angle 0<θ 0 <2π, θ 0 π and θ 0 3π/2, a unique continuation property holds. Approximate controllability of a 2-D linear fluid-structure problem follows from this property, with a control acting on the elastic side of a corner in a domain containing a Stokes fluid. The proof of the main result is based in a power series expansion of the eigenfunctions near the corner, the resolution of a coupled infinite set of finite dimensional linear systems, and a result of Kozlov, Kondratiev and Mazya, concerning the absence of strong zeros for the biharmonic operator [Math. USSR Izvestiya 34 (1990) 337-353]. We also show how the same methodology used here can be adapted to exclude domains with corners to have a local version of the Schiffer property for the Laplace operator.

DOI : 10.1051/cocv:2008024
Classification : 35B60, 35B37
Keywords: continuation of solutions of PDE, fluid-structure control, domains with corners
@article{COCV_2009__15_2_279_0,
     author = {Osses, Axel and Puel, Jean-Pierre},
     title = {Unique continuation property near a corner and its fluid-structure controllability consequences},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {279--294},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {2},
     year = {2009},
     doi = {10.1051/cocv:2008024},
     mrnumber = {2513087},
     zbl = {1176.35042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008024/}
}
TY  - JOUR
AU  - Osses, Axel
AU  - Puel, Jean-Pierre
TI  - Unique continuation property near a corner and its fluid-structure controllability consequences
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 279
EP  - 294
VL  - 15
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008024/
DO  - 10.1051/cocv:2008024
LA  - en
ID  - COCV_2009__15_2_279_0
ER  - 
%0 Journal Article
%A Osses, Axel
%A Puel, Jean-Pierre
%T Unique continuation property near a corner and its fluid-structure controllability consequences
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 279-294
%V 15
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2008024/
%R 10.1051/cocv:2008024
%G en
%F COCV_2009__15_2_279_0
Osses, Axel; Puel, Jean-Pierre. Unique continuation property near a corner and its fluid-structure controllability consequences. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 279-294. doi: 10.1051/cocv:2008024

Cité par Sources :