An Ingham type proof for a two-grid observability theorem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 604-631

Voir la notice de l'article provenant de la source Numdam

Here, we prove the uniform observability of a two-grid method for the semi-discretization of the 1D-wave equation for a time T>22; this time, if the observation is made in (-T/2,T/2), is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413-418]. Our proof follows an Ingham type approach.

DOI : 10.1051/cocv:2007062
Classification : 35L05, 65M55, 93B07
Keywords: uniform observability, two-grid method, Ingham type theorem
@article{COCV_2008__14_3_604_0,
     author = {Mehrenberger, Michel and Loreti, Paola},
     title = {An {Ingham} type proof for a two-grid observability theorem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {604--631},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {3},
     year = {2008},
     doi = {10.1051/cocv:2007062},
     mrnumber = {2434069},
     zbl = {1157.35415},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007062/}
}
TY  - JOUR
AU  - Mehrenberger, Michel
AU  - Loreti, Paola
TI  - An Ingham type proof for a two-grid observability theorem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 604
EP  - 631
VL  - 14
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007062/
DO  - 10.1051/cocv:2007062
LA  - en
ID  - COCV_2008__14_3_604_0
ER  - 
%0 Journal Article
%A Mehrenberger, Michel
%A Loreti, Paola
%T An Ingham type proof for a two-grid observability theorem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 604-631
%V 14
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007062/
%R 10.1051/cocv:2007062
%G en
%F COCV_2008__14_3_604_0
Mehrenberger, Michel; Loreti, Paola. An Ingham type proof for a two-grid observability theorem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 604-631. doi: 10.1051/cocv:2007062

Cité par Sources :