Voir la notice de l'article provenant de la source Numdam
Here, we prove the uniform observability of a two-grid method for the semi-discretization of the -wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413-418]. Our proof follows an Ingham type approach.
@article{COCV_2008__14_3_604_0, author = {Mehrenberger, Michel and Loreti, Paola}, title = {An {Ingham} type proof for a two-grid observability theorem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {604--631}, publisher = {EDP-Sciences}, volume = {14}, number = {3}, year = {2008}, doi = {10.1051/cocv:2007062}, mrnumber = {2434069}, zbl = {1157.35415}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007062/} }
TY - JOUR AU - Mehrenberger, Michel AU - Loreti, Paola TI - An Ingham type proof for a two-grid observability theorem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 604 EP - 631 VL - 14 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007062/ DO - 10.1051/cocv:2007062 LA - en ID - COCV_2008__14_3_604_0 ER -
%0 Journal Article %A Mehrenberger, Michel %A Loreti, Paola %T An Ingham type proof for a two-grid observability theorem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 604-631 %V 14 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2007062/ %R 10.1051/cocv:2007062 %G en %F COCV_2008__14_3_604_0
Mehrenberger, Michel; Loreti, Paola. An Ingham type proof for a two-grid observability theorem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 604-631. doi: 10.1051/cocv:2007062
Cité par Sources :