Existence of optimal maps in the reflector-type problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 1, pp. 93-106

Voir la notice de l'article provenant de la source Numdam

In this paper, we consider probability measures μ and ν on a d-dimensional sphere in 𝐑 d+1 ,d1, and cost functions of the form c(𝐱,𝐲)=l(|𝐱-𝐲| 2 2) that generalize those arising in geometric optics where l(t)=-logt. We prove that if μ and ν vanish on (d-1)-rectifiable sets, if |l ' (t)|>0, lim t0 + l(t)=+, and g(t):=t(2-t)(l ' (t)) 2 is monotone then there exists a unique optimal map T o that transports μ onto ν, where optimality is measured against c. Furthermore, inf 𝐱 |T o 𝐱-𝐱|>0. Our approach is based on direct variational arguments. In the special case when l(t)=-logt, existence of optimal maps on the sphere was obtained earlier in [Glimm and Oliker, J. Math. Sci. 117 (2003) 4096-4108] and [Wang, Calculus of Variations and PDE’s 20 (2004) 329-341] under more restrictive assumptions. In these studies, it was assumed that either μ and ν are absolutely continuous with respect to the d-dimensional Haussdorff measure, or they have disjoint supports. Another aspect of interest in this work is that it is in contrast with the work in [Gangbo and McCann, Quart. Appl. Math. 58 (2000) 705-737] where it is proved that when l(t)=t then existence of an optimal map fails when μ and ν are supported by Jordan surfaces.

DOI : 10.1051/cocv:2006017
Classification : 49, 35J65
Keywords: mass transport, reflector problem, Monge-Ampere equation
@article{COCV_2007__13_1_93_0,
     author = {Gangbo, Wilfrid and Oliker, Vladimir},
     title = {Existence of optimal maps in the reflector-type problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {93--106},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {1},
     year = {2007},
     doi = {10.1051/cocv:2006017},
     mrnumber = {2282103},
     zbl = {1136.49015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006017/}
}
TY  - JOUR
AU  - Gangbo, Wilfrid
AU  - Oliker, Vladimir
TI  - Existence of optimal maps in the reflector-type problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2007
SP  - 93
EP  - 106
VL  - 13
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006017/
DO  - 10.1051/cocv:2006017
LA  - en
ID  - COCV_2007__13_1_93_0
ER  - 
%0 Journal Article
%A Gangbo, Wilfrid
%A Oliker, Vladimir
%T Existence of optimal maps in the reflector-type problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2007
%P 93-106
%V 13
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006017/
%R 10.1051/cocv:2006017
%G en
%F COCV_2007__13_1_93_0
Gangbo, Wilfrid; Oliker, Vladimir. Existence of optimal maps in the reflector-type problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 1, pp. 93-106. doi: 10.1051/cocv:2006017

Cité par Sources :