Voir la notice de l'article provenant de la source Numdam
This paper is concerned with the global exact controllability of the semilinear heat equation (with nonlinear terms involving the state and the gradient) completed with boundary conditions of the form . We consider distributed controls, with support in a small set. The null controllability of similar linear systems has been analyzed in a previous first part of this work. In this second part we show that, when the nonlinear terms are locally Lipschitz-continuous and slightly superlinear, one has exact controllability to the trajectories.
Fernández-Cara, Enrique  ; González-Burgos, Manuel  ; Guerrero, Sergio 1 ; Puel, Jean-Pierre 2
@article{COCV_2006__12_3_466_0, author = {Fern\'andez-Cara, Enrique and Gonz\'alez-Burgos, Manuel and Guerrero, Sergio and Puel, Jean-Pierre}, title = {Exact controllability to the trajectories of the heat equation with {Fourier} boundary conditions : the semilinear case}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {466--483}, publisher = {EDP-Sciences}, volume = {12}, number = {3}, year = {2006}, doi = {10.1051/cocv:2006011}, mrnumber = {2224823}, zbl = {1106.93010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006011/} }
TY - JOUR AU - Fernández-Cara, Enrique AU - González-Burgos, Manuel AU - Guerrero, Sergio AU - Puel, Jean-Pierre TI - Exact controllability to the trajectories of the heat equation with Fourier boundary conditions : the semilinear case JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 466 EP - 483 VL - 12 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006011/ DO - 10.1051/cocv:2006011 LA - en ID - COCV_2006__12_3_466_0 ER -
%0 Journal Article %A Fernández-Cara, Enrique %A González-Burgos, Manuel %A Guerrero, Sergio %A Puel, Jean-Pierre %T Exact controllability to the trajectories of the heat equation with Fourier boundary conditions : the semilinear case %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 466-483 %V 12 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006011/ %R 10.1051/cocv:2006011 %G en %F COCV_2006__12_3_466_0
Fernández-Cara, Enrique; González-Burgos, Manuel; Guerrero, Sergio; Puel, Jean-Pierre. Exact controllability to the trajectories of the heat equation with Fourier boundary conditions : the semilinear case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 466-483. doi : 10.1051/cocv:2006011. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006011/
[1] Parabolic evolution equations and nonlinear boundary conditions. J. Diff. Equ. 72 (1988) 201-269. | Zbl
,[2] Parabolic problems with nonlinear boundary conditions and critical nonlinearities. J. Diff. Equ. 156 (1999) 376-406. | Zbl
, and ,[3] L'analyse non linéaire et ses motivations économiques. Masson, Paris (1984). | Zbl
,[4] Insensitizing controls for a semilinear heat equation with a superlinear nonlinearity. C. R. Math. Acad. Sci. Paris 335 (2002) 677-682. | Zbl
, and ,[5] On the controllability of the heat equation with nonlinear boundary Fourier conditions. J. Diff. Equ. 196 (2004) 385-417. | Zbl
, and ,[6] On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002) 798-819. | Zbl
, , and ,[7] Regularity properties of the heat equation subject to nonlinear boundary constraints. Nonlinear Anal. 1 (1997) 593-602. | Zbl
,[8] Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh 125A (1995) 31-61. | Zbl
, and ,[9] Approximate controllability for the semi-linear heat equation involving gradient terms. J. Optim. Theory Appl. 101 (1999) 307-328. | Zbl
and ,[10] Null controllability of the heat equation with boundary Fourier conditions: The linear case. ESAIM: COCV 12 442-465. | Zbl | mathdoc-id
, , and ,[11] Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Anal. non Linéaire 17 (2000) 583-616. | Zbl | mathdoc-id
and ,[12] Controllability of Evolution Equations. Lecture Notes #34, Seoul National University, Korea (1996). | Zbl | MR
and ,[13] Exact controllability of semilinear abstract systems with applications to waves and plates boundary control. Appl. Math. Optim. 23 (1991) 109-154. | Zbl
and ,[14] Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press, Cambridge (2000). | Zbl
and ,[15] Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations and their Applications, Vol. X, H. Brezis and J.L. Lions Eds. Pitman (1991) 357-391. | Zbl
,[16] Exact controllability for the semilinear wave equation in one space dimension. Ann. I.H.P., Analyse non Linéaire 10 (1993) 109-129. | Zbl | mathdoc-id
,Cité par Sources :