Voir la notice de l'article provenant de la source Numdam
Geometric control theory and riemannian techniques are used to describe the reachable set at time of left invariant single-input control systems on semi-simple compact Lie groups and to estimate the minimal time needed to reach any point from identity. This method provides an effective way to give an upper and a lower bound for the minimal time needed to transfer a controlled quantum system with a drift from a given initial position to a given final position. The bounds include diameters of the flag manifolds; the latter are also explicitly computed in the paper.
@article{COCV_2006__12_3_409_0, author = {Agrachev, Andrei and Chambrion, Thomas}, title = {An estimation of the controllability time for single-input systems on compact {Lie} groups}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {409--441}, publisher = {EDP-Sciences}, volume = {12}, number = {3}, year = {2006}, doi = {10.1051/cocv:2006007}, mrnumber = {2224821}, zbl = {1106.93006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006007/} }
TY - JOUR AU - Agrachev, Andrei AU - Chambrion, Thomas TI - An estimation of the controllability time for single-input systems on compact Lie groups JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 409 EP - 441 VL - 12 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006007/ DO - 10.1051/cocv:2006007 LA - en ID - COCV_2006__12_3_409_0 ER -
%0 Journal Article %A Agrachev, Andrei %A Chambrion, Thomas %T An estimation of the controllability time for single-input systems on compact Lie groups %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 409-441 %V 12 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2006007/ %R 10.1051/cocv:2006007 %G en %F COCV_2006__12_3_409_0
Agrachev, Andrei; Chambrion, Thomas. An estimation of the controllability time for single-input systems on compact Lie groups. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 409-441. doi: 10.1051/cocv:2006007
Cité par Sources :