A nonlocal singular perturbation problem with periodic well potential
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 1, pp. 52-63

Voir la notice de l'article provenant de la source Numdam

For a one-dimensional nonlocal nonconvex singular perturbation problem with a noncoercive periodic well potential, we prove a Γ-convergence theorem and show compactness up to translation in all L p and the optimal Orlicz space for sequences of bounded energy. This generalizes work of Alberti, Bouchitté and Seppecher (1994) for the coercive two-well case. The theorem has applications to a certain thin-film limit of the micromagnetic energy.

DOI : 10.1051/cocv:2005037
Classification : 49J45
Keywords: gamma-convergence, nonlocal variational problem, micromagnetism
@article{COCV_2006__12_1_52_0,
     author = {Kurzke, Matthias},
     title = {A nonlocal singular perturbation problem with periodic well potential},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {52--63},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {1},
     year = {2006},
     doi = {10.1051/cocv:2005037},
     mrnumber = {2192068},
     zbl = {1107.49016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005037/}
}
TY  - JOUR
AU  - Kurzke, Matthias
TI  - A nonlocal singular perturbation problem with periodic well potential
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 52
EP  - 63
VL  - 12
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005037/
DO  - 10.1051/cocv:2005037
LA  - en
ID  - COCV_2006__12_1_52_0
ER  - 
%0 Journal Article
%A Kurzke, Matthias
%T A nonlocal singular perturbation problem with periodic well potential
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 52-63
%V 12
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005037/
%R 10.1051/cocv:2005037
%G en
%F COCV_2006__12_1_52_0
Kurzke, Matthias. A nonlocal singular perturbation problem with periodic well potential. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 1, pp. 52-63. doi: 10.1051/cocv:2005037

Cité par Sources :