Asymptotic stability of linear conservative systems when coupled with diffusive systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 3, pp. 487-507.

Voir la notice de l'article provenant de la source Numdam

In this paper we study linear conservative systems of finite dimension coupled with an infinite dimensional system of diffusive type. Computing the time-derivative of an appropriate energy functional along the solutions helps us to prove the well-posedness of the system and a stability property. But in order to prove asymptotic stability we need to apply a sufficient spectral condition. We also illustrate the sharpness of this condition by exhibiting some systems for which we do not have the asymptotic property.

DOI : 10.1051/cocv:2005016
Classification : 35B37, 93C20, 93D20
Keywords: asymptotic stability, well-posed systems, Lyapunov functional, diffusive representation, fractional calculus
@article{COCV_2005__11_3_487_0,
     author = {Matignon, Denis and Prieur, Christophe},
     title = {Asymptotic stability of linear conservative systems when coupled with diffusive systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {487--507},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {3},
     year = {2005},
     doi = {10.1051/cocv:2005016},
     mrnumber = {2148855},
     zbl = {1125.93030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005016/}
}
TY  - JOUR
AU  - Matignon, Denis
AU  - Prieur, Christophe
TI  - Asymptotic stability of linear conservative systems when coupled with diffusive systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 487
EP  - 507
VL  - 11
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005016/
DO  - 10.1051/cocv:2005016
LA  - en
ID  - COCV_2005__11_3_487_0
ER  - 
%0 Journal Article
%A Matignon, Denis
%A Prieur, Christophe
%T Asymptotic stability of linear conservative systems when coupled with diffusive systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 487-507
%V 11
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005016/
%R 10.1051/cocv:2005016
%G en
%F COCV_2005__11_3_487_0
Matignon, Denis; Prieur, Christophe. Asymptotic stability of linear conservative systems when coupled with diffusive systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 3, pp. 487-507. doi : 10.1051/cocv:2005016. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005016/

[1] W. Arendt and C.J.K. Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306 (1988) 837-852. | Zbl

[2] H. Brezis, Analyse fonctionnelle. Théorie et applications. Masson, Paris (1983). | Zbl | MR

[3] M. Bruneau, Ph. Herzog, J. Kergomard and J.-D. Polack, General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries. Wave Motion 11 (1989) 441-451. | Zbl

[4] T. Cazenave and A. Haraux, An introduction to semilinear evolution equations. Oxford Lecture Series in Mathematics and its Applications 13 (1998). | Zbl | MR

[5] F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11 (1994) 485-515. | Zbl | mathdoc-id

[6] R.F. Curtain and H. Zwart, An introduction to infinite-dimensional linear systems theory. Texts Appl. Math. 21 (1995). | Zbl | MR

[7] G. Dauphin, D. Heleschewitz and D. Matignon, Extended diffusive representations and application to non-standard oscillators, in Proc. of Math. Theory on Network Systems (MTNS), Perpignan, France (2000).

[8] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, Vol. 5. Springer, New York (1984). | Zbl | MR

[9] Z.E.A. Fellah, C. Depollier and M. Fellah, Direct and inverse scattering problem in porous material having a rigid frame by fractional calculus based method. J. Sound Vibration 244 (2001) 3659-3666.

[10] H. Haddar, T. Hélie and D. Matignon, A Webster-Lokshin model for waves with viscothermal losses and impedance boundary conditions: strong solutions, in Proc. of Sixth international conference on mathematical and numerical aspects of wave propagation phenomena, Jyväskylä, Finland (2003) 66-71. | Zbl

[11] Th. Hélie, Unidimensional models of acoustic propagation in axisymmetric waveguides. J. Acoust. Soc. Am. 114 (2003) 2633-2647.

[12] A.E. Ingham, On Wiener's method in Tauberian theorems, in Proc. London Math. Soc. II 38 (1935) 458-480. | JFM | Zbl

[13] J. Korevaar, On Newman's quick way to the prime number theorem. Math. Intell. 4 (1982) 108-115. | Zbl

[14] A.A. Lokshin, Wave equation with singular retarded time. Dokl. Akad. Nauk SSSR 240 (1978) 43-46 (in Russian). | Zbl

[15] A.A. Lokshin and V.E. Rok, Fundamental solutions of the wave equation with retarded time. Dokl. Akad. Nauk SSSR 239 (1978) 1305-1308 (in Russian). | Zbl

[16] Z.-H. Luo, B.-Z. Guo and O. Morgul, Stability and stabilization of infinite dimensional systems and applications. Comm. Control Engrg. Springer-Verlag, New York (1999). | Zbl | MR

[17] Yu.I. Lyubich and V.Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces. Stud. Math. 88 (1988) 37-42. | Zbl | EuDML

[18] D. Matignon, Stability properties for generalized fractional differential systems. ESAIM: Proc. 5 (1998) 145-158. | Zbl

[19] G. Montseny, Diffusive representation of pseudo-differential time-operators. ESAIM: Proc. 5 (1998) 159-175. | Zbl

[20] D.J. Newman, Simple analytic proof of the prime number theorem. Am. Math. Mon. 87 (1980) 693-696. | Zbl

[21] J.-D. Polack, Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process. J. Acoustique 4 (1991) 47-67.

[22] O.J. Staffans, Well-posedness and stabilizability of a viscoelastic equation in energy space. Trans. Am. Math. Soc. 345 (1994) 527-575. | Zbl

[23] O.J. Staffans, Passive and conservative continuous-time impedance and scattering systems. Part I: Well-posed systems. Math. Control Sig. Syst. 15 (2002) 291-315. | Zbl

[24] G. Weiss, O.J. Staffans and M. Tucsnak, Well-posed linear systems - a survey with emphasis on conservative systems. Internat. J. Appl. Math. Comput. Sci. 11 (2001) 7-33. | Zbl | EuDML

[25] G. Weiss and M. Tucsnak, How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance. ESAIM: COCV 9 (2003) 247-273. | Zbl | mathdoc-id | EuDML

Cité par Sources :