A two well Liouville theorem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 3, pp. 310-356

Voir la notice de l'article provenant de la source Numdam

In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller. Let H=σ00σ -1 for σ>0. Let 0<ζ 1 <1<ζ 2 <. Let K:=SO2SO2H. Let uW 2,1 Q 1 0 be a C 1 invertible bilipschitz function with Lip u<ζ 2 , Lip u -1 <ζ 1 -1 . There exists positive constants 𝔠 1 <1 and 𝔠 2 >1 depending only on σ, ζ 1 , ζ 2 such that if ϵ0,𝔠 1 and u satisfies the following inequalities

Q 1 0 dDuz,KdL 2 zϵ
Q 1 0 D 2 uzdL 2 z𝔠 1 ,
then there exists JId,H and RSO2 such that
Q 𝔠 1 0 Duz-RJdL 2 z𝔠 2 ϵ 1 800 .

DOI : 10.1051/cocv:2005009
Classification : 74N15
Keywords: two wells, Liouville
@article{COCV_2005__11_3_310_0,
     author = {Lorent, Andrew},
     title = {A two well {Liouville} theorem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {310--356},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {3},
     year = {2005},
     doi = {10.1051/cocv:2005009},
     mrnumber = {2148848},
     zbl = {1082.74039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005009/}
}
TY  - JOUR
AU  - Lorent, Andrew
TI  - A two well Liouville theorem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 310
EP  - 356
VL  - 11
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005009/
DO  - 10.1051/cocv:2005009
LA  - en
ID  - COCV_2005__11_3_310_0
ER  - 
%0 Journal Article
%A Lorent, Andrew
%T A two well Liouville theorem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 310-356
%V 11
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2005009/
%R 10.1051/cocv:2005009
%G en
%F COCV_2005__11_3_310_0
Lorent, Andrew. A two well Liouville theorem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 3, pp. 310-356. doi: 10.1051/cocv:2005009

Cité par Sources :