Invariant tracking
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 1-13

Voir la notice de l'article provenant de la source Numdam

The problem of invariant output tracking is considered: given a control system admitting a symmetry group G, design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of G. Invariant output errors are defined as a set of scalar invariants of G; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required “symmetry-preserving” feedback.

DOI : 10.1051/cocv:2003037
Classification : 53A55, 93C10, 93D25, 70Q05
Keywords: symmetries, invariants, nonlinear control, output tracking, decoupling

Martin, Philippe  ; Rouchon, Pierre  ; Rudolph, Joachim 1

1 Institut fur Regelungs- und Steuerungstheorie, Technische Universität Dresden, Mommsenstr. 13, 01062 Dresden, Germany
@article{COCV_2004__10_1_1_0,
     author = {Martin, Philippe and Rouchon, Pierre and Rudolph, Joachim},
     title = {Invariant tracking},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--13},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {1},
     year = {2004},
     doi = {10.1051/cocv:2003037},
     mrnumber = {2084252},
     zbl = {1088.93016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003037/}
}
TY  - JOUR
AU  - Martin, Philippe
AU  - Rouchon, Pierre
AU  - Rudolph, Joachim
TI  - Invariant tracking
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 1
EP  - 13
VL  - 10
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003037/
DO  - 10.1051/cocv:2003037
LA  - en
ID  - COCV_2004__10_1_1_0
ER  - 
%0 Journal Article
%A Martin, Philippe
%A Rouchon, Pierre
%A Rudolph, Joachim
%T Invariant tracking
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 1-13
%V 10
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003037/
%R 10.1051/cocv:2003037
%G en
%F COCV_2004__10_1_1_0
Martin, Philippe; Rouchon, Pierre; Rudolph, Joachim. Invariant tracking. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 1-13. doi: 10.1051/cocv:2003037

Cité par Sources :