Γ-convergence and absolute minimizers for supremal functionals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 14-27

Voir la notice de l'article provenant de la source Numdam

In this paper, we prove that the L p approximants naturally associated to a supremal functional Γ-converge to it. This yields a lower semicontinuity result for supremal functionals whose supremand satisfy weak coercivity assumptions as well as a generalized Jensen inequality. The existence of minimizers for variational problems involving such functionals (together with a Dirichlet condition) then easily follows. In the scalar case we show the existence of at least one absolute minimizer (i.e. local solution) among these minimizers. We provide two different proofs of this fact relying on different assumptions and techniques.

DOI : 10.1051/cocv:2003036
Classification : 49J45, 49J99
Keywords: supremal functionals, lower semicontinuity, generalized Jensen inequality, absolute minimizer (AML, local minimizer), $L^p$ approximation
@article{COCV_2004__10_1_14_0,
     author = {Champion, Thierry and Pascale, Luigi De and Prinari, Francesca},
     title = {$\Gamma $-convergence and absolute minimizers for supremal functionals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {14--27},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {1},
     year = {2004},
     doi = {10.1051/cocv:2003036},
     mrnumber = {2084253},
     zbl = {1068.49007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003036/}
}
TY  - JOUR
AU  - Champion, Thierry
AU  - Pascale, Luigi De
AU  - Prinari, Francesca
TI  - $\Gamma $-convergence and absolute minimizers for supremal functionals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 14
EP  - 27
VL  - 10
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003036/
DO  - 10.1051/cocv:2003036
LA  - en
ID  - COCV_2004__10_1_14_0
ER  - 
%0 Journal Article
%A Champion, Thierry
%A Pascale, Luigi De
%A Prinari, Francesca
%T $\Gamma $-convergence and absolute minimizers for supremal functionals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 14-27
%V 10
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003036/
%R 10.1051/cocv:2003036
%G en
%F COCV_2004__10_1_14_0
Champion, Thierry; Pascale, Luigi De; Prinari, Francesca. $\Gamma $-convergence and absolute minimizers for supremal functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 14-27. doi: 10.1051/cocv:2003036

Cité par Sources :