Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 449-460

Voir la notice de l'article provenant de la source Numdam

We investigate the asymptotic behaviour, as ε0, of a class of monotone nonlinear Neumann problems, with growth p-1 (p]1,+[), on a bounded multidomain Ω ε N (N2). The multidomain Ω ε is composed of two domains. The first one is a plate which becomes asymptotically flat, with thickness h ε in the x N direction, as ε0. The second one is a “forest” of cylinders distributed with ε-periodicity in the first N-1 directions on the upper side of the plate. Each cylinder has a small cross section of size ε and fixed height (for the case N=3, see the figure). We identify the limit problem, under the assumption: lim ε0 ε p h ε =0. After rescaling the equation, with respect to h ε , on the plate, we prove that, in the limit domain corresponding to the “forest” of cylinders, the limit problem identifies with a diffusion operator with respect to x N , coupled with an algebraic system. Moreover, the limit solution is independent of x N in the rescaled plate and meets a Dirichlet transmission condition between the limit domain of the “forest” of cylinders and the upper boundary of the plate.

DOI : 10.1051/cocv:2003022
Classification : 35B27, 35J60
Keywords: homogenization, oscillating boundaries, multidomain, monotone problem

Blanchard, Dominique  ; Gaudiello, Antonio 1

1 Università di Cassino, Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell’Informazione e Matematica Industriale, via G. Di Biasio 43, 03043 Cassino (FR), Italy;
@article{COCV_2003__9__449_0,
     author = {Blanchard, Dominique and Gaudiello, Antonio},
     title = {Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {449--460},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2003022},
     mrnumber = {1998710},
     zbl = {1071.35012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003022/}
}
TY  - JOUR
AU  - Blanchard, Dominique
AU  - Gaudiello, Antonio
TI  - Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
SP  - 449
EP  - 460
VL  - 9
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003022/
DO  - 10.1051/cocv:2003022
LA  - en
ID  - COCV_2003__9__449_0
ER  - 
%0 Journal Article
%A Blanchard, Dominique
%A Gaudiello, Antonio
%T Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 449-460
%V 9
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003022/
%R 10.1051/cocv:2003022
%G en
%F COCV_2003__9__449_0
Blanchard, Dominique; Gaudiello, Antonio. Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 449-460. doi: 10.1051/cocv:2003022

Cité par Sources :