Motion planning for a nonlinear Stefan problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 275-296

Voir la notice de l'article provenant de la source Numdam

In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the system should be for steady-state to steady-state boundary control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic nonlinearity. We prove convergence of a series solution and give a detailed parametric study on the series radius of convergence. Moreover, we prove that the parametrization can indeed can be used for motion planning purposes; computation of the open loop motion planning is straightforward. Simulation results are given and we prove some important properties about the solution. Namely, a weak maximum principle is derived for the dynamics, stating that the maximum is on the boundary. Also, we prove asymptotic positiveness of the solution, a physical requirement over the entire domain, as the transient time from one steady-state to another gets large.

DOI : 10.1051/cocv:2003013
Classification : 93C20, 80A22, 80A23
Keywords: inverse Stefan problem, flatness, motion planning
@article{COCV_2003__9__275_0,
     author = {Dunbar, William B. and Petit, Nicolas and Rouchon, Pierre and Martin, Philippe},
     title = {Motion planning for a nonlinear {Stefan} problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {275--296},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2003013},
     mrnumber = {1966534},
     zbl = {1063.93021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003013/}
}
TY  - JOUR
AU  - Dunbar, William B.
AU  - Petit, Nicolas
AU  - Rouchon, Pierre
AU  - Martin, Philippe
TI  - Motion planning for a nonlinear Stefan problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
SP  - 275
EP  - 296
VL  - 9
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003013/
DO  - 10.1051/cocv:2003013
LA  - en
ID  - COCV_2003__9__275_0
ER  - 
%0 Journal Article
%A Dunbar, William B.
%A Petit, Nicolas
%A Rouchon, Pierre
%A Martin, Philippe
%T Motion planning for a nonlinear Stefan problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 275-296
%V 9
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003013/
%R 10.1051/cocv:2003013
%G en
%F COCV_2003__9__275_0
Dunbar, William B.; Petit, Nicolas; Rouchon, Pierre; Martin, Philippe. Motion planning for a nonlinear Stefan problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 275-296. doi: 10.1051/cocv:2003013

Cité par Sources :