Voir la notice de l'article provenant de la source Numdam
Let be a possibly unbounded positive operator on the Hilbert space , which is boundedly invertible. Let be a bounded operator from to another Hilbert space . We prove that the system of equations
@article{COCV_2003__9__247_0, author = {Weiss, George and Tucsnak, Marius}, title = {How to get a conservative well-posed linear system out of thin air. {Part} {I.} {Well-posedness} and energy balance}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {247--273}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003012}, mrnumber = {1966533}, zbl = {1063.93026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003012/} }
TY - JOUR AU - Weiss, George AU - Tucsnak, Marius TI - How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 247 EP - 273 VL - 9 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003012/ DO - 10.1051/cocv:2003012 LA - en ID - COCV_2003__9__247_0 ER -
%0 Journal Article %A Weiss, George %A Tucsnak, Marius %T How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 247-273 %V 9 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2003012/ %R 10.1051/cocv:2003012 %G en %F COCV_2003__9__247_0
Weiss, George; Tucsnak, Marius. How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 247-273. doi: 10.1051/cocv:2003012
Cité par Sources :