Smooth solutions of systems of quasilinear parabolic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 169-193

Voir la notice de l'article provenant de la source Numdam

We consider in this article diagonal parabolic systems arising in the context of stochastic differential games. We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games. Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear hamiltonian seems to be the adequate one to achieve the regularity property. A key step in the theory is to prove the existence of Hölder solution.

DOI : 10.1051/cocv:2002059
Classification : 35XX, 49XX
Keywords: parabolic equations, quasilinear, game theory, regularity, stochastic optimal control, smallness condition, specific structure, maximum principle, Green function, hamiltonian
@article{COCV_2002__8__169_0,
     author = {Bensoussan, Alain and Frehse, Jens},
     title = {Smooth solutions of systems of quasilinear parabolic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {169--193},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002059},
     mrnumber = {1932949},
     zbl = {1078.35022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002059/}
}
TY  - JOUR
AU  - Bensoussan, Alain
AU  - Frehse, Jens
TI  - Smooth solutions of systems of quasilinear parabolic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 169
EP  - 193
VL  - 8
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002059/
DO  - 10.1051/cocv:2002059
LA  - en
ID  - COCV_2002__8__169_0
ER  - 
%0 Journal Article
%A Bensoussan, Alain
%A Frehse, Jens
%T Smooth solutions of systems of quasilinear parabolic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 169-193
%V 8
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002059/
%R 10.1051/cocv:2002059
%G en
%F COCV_2002__8__169_0
Bensoussan, Alain; Frehse, Jens. Smooth solutions of systems of quasilinear parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 169-193. doi: 10.1051/cocv:2002059

Cité par Sources :