Voir la notice de l'article provenant de la source Numdam
We consider in this article diagonal parabolic systems arising in the context of stochastic differential games. We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games. Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear hamiltonian seems to be the adequate one to achieve the regularity property. A key step in the theory is to prove the existence of Hölder solution.
@article{COCV_2002__8__169_0, author = {Bensoussan, Alain and Frehse, Jens}, title = {Smooth solutions of systems of quasilinear parabolic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {169--193}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002059}, mrnumber = {1932949}, zbl = {1078.35022}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002059/} }
TY - JOUR AU - Bensoussan, Alain AU - Frehse, Jens TI - Smooth solutions of systems of quasilinear parabolic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 169 EP - 193 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002059/ DO - 10.1051/cocv:2002059 LA - en ID - COCV_2002__8__169_0 ER -
%0 Journal Article %A Bensoussan, Alain %A Frehse, Jens %T Smooth solutions of systems of quasilinear parabolic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 169-193 %V 8 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002059/ %R 10.1051/cocv:2002059 %G en %F COCV_2002__8__169_0
Bensoussan, Alain; Frehse, Jens. Smooth solutions of systems of quasilinear parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 169-193. doi : 10.1051/cocv:2002059. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002059/
[1] Bounds for Fundamental Solution of a Parabolic Equation. Bull. Amer. Math. Soc. 73 (1968) 890-896. | Zbl | MR
,[2] Regularity of Solutions of Systems of Partial Differential Equations and Applications. Springer Verlag (to be published).
and ,[3] Nonlinear elliptic systems in stochastic game theory. J. Reine Angew. Math. 350 (1984) 23-67. | Zbl | MR
and ,[4] -Regularity Results for Quasi-Linear Parabolic Systems. Comment. Math. Univ. Carolin. 31 (1990) 453-474. | Zbl | MR
and ,[5] Ergodic Bellman systems for stochastic games, in Differential equations, dynamical systems, and control science. Dekker, New York (1994) 411-421. | Zbl | MR
and ,[6] Ergodic Bellman systems for stochastic games in arbitrary dimension. Proc. Roy. Soc. London Ser. A 449 (1935) 65-77. | Zbl | MR
and ,[7] Stochastic games for players. J. Optim. Theory Appl. 105 (2000) 543-565. Special Issue in honor of Professor David G. Luenberger. | Zbl | MR
and ,[8] Impulse control and quasivariational inequalities. Gauthier-Villars (1984). Translated from the French by J.M. Cole. | MR
and ,[9] Equazioni paraboliche del secondo ordine e spazi . Ann. Mat. Pura Appl. (4) 73 (1966) 55-102. | Zbl | MR
,[10] Spazi e loro proprietà. Ann. Mat. Pura Appl. (4) 69 (1965) 383-392. | Zbl | MR
,[11] Remarks on diagonal elliptic systems, in Partial differential equations and calculus of variations. Springer, Berlin (1988) 198-210. | Zbl | MR
,[12] Bellman Systems of Stochastic Differential Games with three Players in Optimal Control and Partial Differential Equations, edited by J.L. Menaldi, E. Rofman and A. Sulem. IOS Press (2001). | Zbl
,[13] Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975) 67-86. | Zbl | MR
and ,[14] Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97-107. | Zbl | mathdoc-id
and ,[15] Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence, R.I. (1967). | Zbl | MR
, and ,[16] On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems. Manuscripta Math. 35 (1981) 125-145. | Zbl | MR
,[17] Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme. Math. Z. 147 (1976) 21-28. | Zbl | MR
,Cité par Sources :