Asymmetric heteroclinic double layers
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 965-1005
Cet article a éte moissonné depuis la source Numdam
Let be a non-negative function of class from to , which vanishes exactly at two points and . Let be the set of functions of a real variable which tend to at and to at and whose one dimensional energy
DOI :
10.1051/cocv:2002039
Classification :
35J50, 35J60, 35B40, 35A15, 35Q99
Keywords: heteroclinic connections, Ginzburg-Landau, elliptic systems in unbounded domains, non convex optimization
Keywords: heteroclinic connections, Ginzburg-Landau, elliptic systems in unbounded domains, non convex optimization
@article{COCV_2002__8__965_0,
author = {Schatzman, Michelle},
title = {Asymmetric heteroclinic double layers},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {965--1005},
year = {2002},
publisher = {EDP-Sciences},
volume = {8},
doi = {10.1051/cocv:2002039},
mrnumber = {1932983},
zbl = {1092.35030},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002039/}
}
TY - JOUR AU - Schatzman, Michelle TI - Asymmetric heteroclinic double layers JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 965 EP - 1005 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002039/ DO - 10.1051/cocv:2002039 LA - en ID - COCV_2002__8__965_0 ER -
Schatzman, Michelle. Asymmetric heteroclinic double layers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 965-1005. doi: 10.1051/cocv:2002039
Cité par Sources :