Voir la notice de l'article provenant de la source Numdam
Let be a non-negative function of class from to , which vanishes exactly at two points and . Let be the set of functions of a real variable which tend to at and to at and whose one dimensional energy
@article{COCV_2002__8__965_0, author = {Schatzman, Michelle}, title = {Asymmetric heteroclinic double layers}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {965--1005}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002039}, mrnumber = {1932983}, zbl = {1092.35030}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002039/} }
TY - JOUR AU - Schatzman, Michelle TI - Asymmetric heteroclinic double layers JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 965 EP - 1005 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002039/ DO - 10.1051/cocv:2002039 LA - en ID - COCV_2002__8__965_0 ER -
Schatzman, Michelle. Asymmetric heteroclinic double layers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 965-1005. doi: 10.1051/cocv:2002039
Cité par Sources :