Control of transonic shock positions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 907-914
Cet article a éte moissonné depuis la source Numdam
We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .
DOI :
10.1051/cocv:2002034
Classification :
35, 65, 76, 93
Keywords: partial differential equations, control, calculus of variation, nozzle flow, sensitivity, transonic equation
Keywords: partial differential equations, control, calculus of variation, nozzle flow, sensitivity, transonic equation
@article{COCV_2002__8__907_0,
author = {Pironneau, Olivier},
title = {Control of transonic shock positions},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {907--914},
year = {2002},
publisher = {EDP-Sciences},
volume = {8},
doi = {10.1051/cocv:2002034},
mrnumber = {1932979},
zbl = {1069.35043},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002034/}
}
TY - JOUR AU - Pironneau, Olivier TI - Control of transonic shock positions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 907 EP - 914 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002034/ DO - 10.1051/cocv:2002034 LA - en ID - COCV_2002__8__907_0 ER -
Pironneau, Olivier. Control of transonic shock positions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 907-914. doi: 10.1051/cocv:2002034
Cité par Sources :
