Voir la notice de l'article provenant de la source Numdam
We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .
@article{COCV_2002__8__907_0, author = {Pironneau, Olivier}, title = {Control of transonic shock positions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {907--914}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002034}, mrnumber = {1932979}, zbl = {1069.35043}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002034/} }
TY - JOUR AU - Pironneau, Olivier TI - Control of transonic shock positions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 907 EP - 914 VL - 8 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002034/ DO - 10.1051/cocv:2002034 LA - en ID - COCV_2002__8__907_0 ER -
Pironneau, Olivier. Control of transonic shock positions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 907-914. doi: 10.1051/cocv:2002034
Cité par Sources :