Voir la notice de l'article provenant de la source Numdam
We consider the weak closure of the set of all feasible pairs (solution, flow) of the family of potential elliptic systems
@article{COCV_2002__7__309_0, author = {Raitums, Uldis}, title = {Relaxation of quasilinear elliptic systems via {A-quasiconvex} envelopes}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {309--334}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002014}, mrnumber = {1925032}, zbl = {1037.49011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002014/} }
TY - JOUR AU - Raitums, Uldis TI - Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 309 EP - 334 VL - 7 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002014/ DO - 10.1051/cocv:2002014 LA - en ID - COCV_2002__7__309_0 ER -
%0 Journal Article %A Raitums, Uldis %T Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 309-334 %V 7 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002014/ %R 10.1051/cocv:2002014 %G en %F COCV_2002__7__309_0
Raitums, Uldis. Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 309-334. doi : 10.1051/cocv:2002014. http://geodesic.mathdoc.fr/articles/10.1051/cocv:2002014/
[1] Regularity of quasiconvex envelopes, Preprint No. 72/1999. Max-Planck Institute für Mathematik in der Naturwissenschaften, Leipzig (1999). | Zbl | MR
, and ,[2] Direct Methods in the Calculus of Variations. Springer: Berlin, Heidelberg, New York (1989). | Zbl | MR
,[3] A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | Zbl | MR
and ,[4] Optimal design and relaxation of variational problems, Parts I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 138-182, 353-377. | Zbl
and ,[5] Regularization of optimal problems of design of bars and plates, Parts 1 and 2. JOTA 37 (1982) 499-543. | Zbl | MR
, and ,[6] On -regularity of functions that define G-closure. Z. Anal. Anwendungen 20 (2001) 203-214. | Zbl | MR
and ,[7] Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Super. Pisa 8 (1981) 69-102. | Zbl | MR | mathdoc-id
,[8] Properties of optimal control problems for elliptic equations, edited by W. Jäger et al., Partial Differential Equations Theory and Numerical Solutions. Boca Raton: Chapman & Hall/CRC, Res. Notes in Math. 406 (2000) 290-297. | Zbl | MR
,[9] An introduction to the homogenization method in optimal design. CIME Summer Course. Troia (1998). http://www.math.cmu.edu/cna/publications.html | Zbl
,[10] Homogenization of Differential Operators and Integral Functionals. Springer: Berlin, Hedelberg, New York (1994). | Zbl | MR
, and ,Cité par Sources :