Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 117.

Voir la notice de l'article provenant de la source Numdam

We show that under Kalman’s rank condition on the coupling matrices, the uniqueness of solution to a complex system of elliptic operators can be reduced to the observability of a scalar problem. Based on this result, we establish the asymptotic stability and the asymptotic synchronization for a large class of linear dissipative systems.

DOI : 10.1051/cocv/2020062
Classification : 93B05, 93C20, 35L53
Keywords: uniqueness, elliptic systems, asymptotic synchronization, condition of compatibility, Kalman’s rank condition
@article{COCV_2020__26_1_A117_0,
     author = {Li, Tatsien and Rao, Bopeng},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinsk, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020062},
     mrnumber = {4188830},
     zbl = {1461.93416},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020062/}
}
TY  - JOUR
AU  - Li, Tatsien
AU  - Rao, Bopeng
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinsk, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020062/
DO  - 10.1051/cocv/2020062
LA  - en
ID  - COCV_2020__26_1_A117_0
ER  - 
%0 Journal Article
%A Li, Tatsien
%A Rao, Bopeng
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinsk, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020062/
%R 10.1051/cocv/2020062
%G en
%F COCV_2020__26_1_A117_0
Li, Tatsien; Rao, Bopeng. Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 117. doi : 10.1051/cocv/2020062. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020062/

[1] F. Ammar-Khodja, A. Benabdallah, J.E. Munoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type. J. Diff. Eqs. 194 (2003) 82–115. | MR | Zbl | DOI

[2] W. Arendt and C.J. Batty, Tauberian theorems and stability of one-parameter semi-groups. Trans. Amer. Math. Soc. 306 (1988) 837–852. | MR | Zbl | DOI

[3] C.D. Benchimol, A note on weak stabilization of contraction semi-groups. SIAM J. Control Optim. 16 (1978) 373–379. | MR | Zbl | DOI

[4] L. De Teresa and E. Zuazua, Controllability of the linear system of thermoelastic plates. Adv. Diff. Eqs. 1 (1996) 369–402. | MR | Zbl

[5] N. Garofalo and F. Lin, Uniqueness of solution for elliptic operators. A geometric-variational approach. Commun. Pure Appl. Math. 40 (1987) 347–366. | MR | Zbl | DOI

[6] S.W. Hansen and B. Zhang, Boundary control of a linear thermo-elastic beam. J. Math. Anal. Appl. 210 (1997) 182–205. | MR | Zbl | DOI

[7] J. Hao, B. Rao, Influence of the hidden regularity on the stability of partially damped systems of wave equations. J. Math. Pure Appl. 143 (2020) 257–286. | MR | Zbl | DOI

[8] B.V. Kapitonov, Stabilization and exact boundary controllability for Maxwell’s equations. SIAM J. Control Optim. 32 (1994) 408–420. | MR | Zbl | DOI

[9] J.U. Kim and Y. Renardy, Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (1987) 1417–1429. | MR | Zbl | DOI

[10] H. Koch and D. Tataru, Carleman estimates and uniqueness of solution for second-order elliptic equations with nonsmooth coefficients. Commun. Pure Appl. Math. 54 (2001) 339–360. | MR | Zbl | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] J.E. Lagnese, Boundary Stabilization of Thin Plates. SIAM, Study in applied mathematics. Philadelphia (1989). | MR | Zbl

[12] J.E. Lagnese and J.-L. Lions, Modelling Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées, Masson, Paris (1988). | MR | Zbl

[13] I. Lasiecka and R. Triggiani, Uniform stabilization of a shallow shell model with nonlinear boundary dampings. J. Math. Anal. Appl. 269 (2002) 642–688. | MR | Zbl | DOI

[14] F. Li and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback. J. Appl. Anal. Comp. 8 (2018) 390–401. | MR | Zbl

[15] F. Li and Z. Jia, Global existence and stability of a class of nonlinear evolution equations with hereditary memory and variable density Bound. Value Probl. 37 (2019) 23. | MR | Zbl

[16] T.-T. Li and B. Rao, Criteria of Kalman’s type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls. SIAM J. Control Optim. 54 (2016) 49–72. | Zbl | MR | DOI

[17] T.-T. Li and B. Rao, On the approximate boundary synchronization for a coupled system of wave equations: Direct and indirect controls. ESAIM: COCV 24 (2018) 1675–1704. | MR | Zbl | mathdoc-id

[18] T.T. Li and B. Rao, Kalman’s criterion on the uniqueness of continuation for the nilpotent system of wave equations. C. R. Acad. Sci. Paris, Ser. I 356 (2018) 1188–1194. | MR | Zbl | DOI

[19] T.-T. Li and B. Rao, On the approximate boundary synchronization for a coupled system of wave equations: Direct and indirect boundary controls. ESAIM: COCV 24 (2018) 1675–1704. | MR | Zbl | mathdoc-id

[20] T.-T. Li and B. Rao, Boundary Synchronization for Hyperbolic Systems. Progress in Non Linear Differential Equations and Their Applications, Subseries in Control, Vol. 94. Birkhaüser (2019). | MR | Zbl

[21] T.-T. Li and B. Rao, Uniqueness theorem for partially observed elliptic systems and application to asymptotic synchronization. C. R. Math. 358 (2020) 285–295. | MR | Zbl | DOI

[22] T.-T. Li and B. Rao, Uniform synchronization of second order evolution equations. Inpreparation 2020.

[23] T.-T. Li, B. Rao and Y.M. Wei, Generalized exact boundary synchronization for second order evolution systems. Disc. Contin. Dyn. Syst. 34 (2014) 2893–2905. | MR | Zbl | DOI

[24] F. Li, Sh. Xi, K. Xu and X. Xue, Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions II. J. Appl. Anal. Comput. 9 (2019) 2318–2332. | MR | Zbl

[25] Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60 (2009) 54–69. | MR | Zbl | DOI

[26] A. Pazy, Semi-groups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer-Verlag (1983). | MR | Zbl

[27] B. Rao, On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations. Z. Angew. Math. Phys. 70 (2019) 25. | MR | Zbl

[28] L. Ren and J. Xin, Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D. Electr. J. Diff. Eqs. 312 (2018) 1–22. | MR | Zbl

[29] F. Trèves, Basic Linear Partial Differential Equations. Pure and Applied Mathematics, Vol. 62. Academic Press, New York/London (1975). | MR | Zbl

[30] X. Zheng, J. Xin and X. Peng, Orbital stability of periodic traveling wave solutions to the generalized long-short wave equations. J. Appl. Anal. Comput. 9 (2019) 2389–2408. | MR | Zbl

Cité par Sources :