Analysis of control problems of nonmontone semilinear elliptic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 80.

Voir la notice de l'article provenant de la source Numdam

In this paper we study optimal control problems governed by a semilinear elliptic equation. The equation is nonmonotone due to the presence of a convection term, despite the monotonocity of the nonlinear term. The resulting operator is neither monotone nor coervive. However, by using conveniently a comparison principle we prove existence and uniqueness of solution for the state equation. In addition, we prove some regularity of the solution and differentiability of the relation control-to-state. This allows us to derive first and second order conditions for local optimality.

DOI : 10.1051/cocv/2020032
Classification : 35J61, 49J20, 49K20
Keywords: Optimal control, semilinear partial differential equation, optimality conditions
@article{COCV_2020__26_1_A80_0,
     author = {Casas, Eduardo and Mateos, Mariano and R\"osch, Arnd},
     title = {Analysis of control problems of nonmontone semilinear elliptic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020032},
     mrnumber = {4162938},
     zbl = {1460.35150},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020032/}
}
TY  - JOUR
AU  - Casas, Eduardo
AU  - Mateos, Mariano
AU  - Rösch, Arnd
TI  - Analysis of control problems of nonmontone semilinear elliptic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020032/
DO  - 10.1051/cocv/2020032
LA  - en
ID  - COCV_2020__26_1_A80_0
ER  - 
%0 Journal Article
%A Casas, Eduardo
%A Mateos, Mariano
%A Rösch, Arnd
%T Analysis of control problems of nonmontone semilinear elliptic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020032/
%R 10.1051/cocv/2020032
%G en
%F COCV_2020__26_1_A80_0
Casas, Eduardo; Mateos, Mariano; Rösch, Arnd. Analysis of control problems of nonmontone semilinear elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 80. doi : 10.1051/cocv/2020032. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020032/

[1] H.T. Banks and K. Kunisch, Estimation techniques for distributed parameter systems, volume 1 of Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1989). | MR | Zbl

[2] T. Bayen and F. Silva, Second order analysis for strong solutions in the optimal control of parabolic equations. SIAM J. Control Optim. 54 (2016) 819–844. | MR | Zbl | DOI

[3] T. Bayen, F. Bonnans and F. Silva, Characterization of local quadratic growth for strong minima in the optimal control of semi-linear elliptic equations. Trans. Amer. Math. Soc. 366 (2014) 2063–2087. | MR | Zbl | DOI

[4] L. Boccardo, Stampacchia-Caldéron-Zygmund theory for linear elliptic equations with discontinuous coefficients and singular drift. ESAIM: COCV 25 (2019) 47. | MR | Zbl | mathdoc-id

[5] L. Boccardo, Two semilinear Dirichlet problems “almost” in duality. Boll. Unione Mat. It. 12 (2019) 349–356. | MR | Zbl | DOI

[6] E. Casas and M. Mateos, Optimal control of partial differential equations, in Computational mathematics, numerical analysis and applications, Vol. 13 of SEMA SIMAI Springer Series. Springer, Cham (2017) 3–59. | MR | Zbl | DOI

[7] E. Casas and M. Mateos, Critical cones for sufficient second order conditions in PDE constrained optimization. SIAM J. Optim. 30 (2020) 585–603. | MR | Zbl | DOI

[8] E. Casas and F. Tröltzsch, Optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48 (2009) 688–718. | MR | Zbl | DOI

[9] E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: Improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279. | MR | Zbl | DOI

[10] E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber Dtsch Math-Ver 117 (2015) 3–44. | MR | Zbl | DOI

[11] E. Casas and F. Tröltzsch, State-constrained semilinear elliptic optimization problems with unrestricted sparse controls. Math. Control Relat. Fields 10 (2020) 527–546. | MR | Zbl | DOI

[12] L.C. Evans, Partial differential equations, Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998). | MR | Zbl

[13] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1983). | MR | Zbl

[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR | Zbl

[15] M. Křížek and L. Liu, On the maximum and comparison principles for a steady-state nonlinear heat condution problem. Z. Angew. Math. Mech. 83 (2003) 559–563. | MR | Zbl | DOI

[16] O.A. Ladyzhenskaya and N.N. Ural’Tseva, Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968). | MR | Zbl

[17] J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Editeurs Academia, Belgium (1967). | MR | Zbl

[18] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. | MR | Zbl | mathdoc-id | DOI

[19] N.S. Trudinger, Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973) 265–308. | MR | Zbl | mathdoc-id

Cité par Sources :

The first two authors were partially supported by Spanish Ministerio de Economía y Competitividad under research project MTM2017-83185-P.