Stochastic optimal control of a evolutionary p -Laplace equation with multiplicative Lévy noise
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 100.

Voir la notice de l'article provenant de la source Numdam

In this article, we are interested in an initial value optimal control problem for a evolutionary p-Laplace equation driven by multiplicative Lévy noise. We first present wellposedness of a weak solution by using an implicit time discretization of the problem, along with the Jakubowski version of the Skorokhod theorem for a non-metric space. We then formulate associated control problem, and establish existence of an optimal solution by using variational method and exploiting the convexity property of the cost functional.

DOI : 10.1051/cocv/2020028
Classification : 45K05, 46S50, 49L20, 49L25, 91A23, 93E20
Keywords: Evolutionary $p$-Laplace equation, stochastic PDEs, weak solution, Skorokhod theorem
@article{COCV_2020__26_1_A100_0,
     author = {Majee, Ananta K.},
     title = {Stochastic optimal control of a evolutionary $p${-Laplace} equation with multiplicative {L\'evy} noise},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020028},
     mrnumber = {4185059},
     zbl = {1465.45010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020028/}
}
TY  - JOUR
AU  - Majee, Ananta K.
TI  - Stochastic optimal control of a evolutionary $p$-Laplace equation with multiplicative Lévy noise
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020028/
DO  - 10.1051/cocv/2020028
LA  - en
ID  - COCV_2020__26_1_A100_0
ER  - 
%0 Journal Article
%A Majee, Ananta K.
%T Stochastic optimal control of a evolutionary $p$-Laplace equation with multiplicative Lévy noise
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020028/
%R 10.1051/cocv/2020028
%G en
%F COCV_2020__26_1_A100_0
Majee, Ananta K. Stochastic optimal control of a evolutionary $p$-Laplace equation with multiplicative Lévy noise. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 100. doi : 10.1051/cocv/2020028. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020028/

[1] P. Billingsley, Convergence of Probability measures, 2nd edn. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New York (1999). | MR | Zbl | DOI

[2] I.H. Biswas, K.H. Karlsen and A.K. Majee, Conservation laws driven by Lévy white noise. J. Hyperb. Differ. Equ. 12 (2015) 581–654. | MR | Zbl | DOI

[3] D. Blackwell and L.E. Dubins, An extension of Skorokhod’s almost sure representation theorem. Proc. Am. Math. Soc. 89 (1983) 691–692. | MR | Zbl

[4] Z. Brzeźniak and E. Hausenblas, Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145 (2009) 615–637. | MR | Zbl | DOI

[5] Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains. J. Differ. Equ. 254 (2013) 1627–1685. | MR | Zbl | DOI

[6] Z. Brzeźniak and R. Serrano, Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces. SIAM J. Control Optim. 51 (2013) 2664–2703. | MR | Zbl | DOI

[7] Z. Brzeźniak, E. Hausenblas and P.A. Razafimandimby, Stochastic reaction diffusion equation driven by jump processes. Potential Anal. 49 (2018) 131–201. | MR | Zbl | DOI

[8] E. Dibenedetto, Degenerate parabolic equations. Springer, New York (1993). | MR | Zbl | DOI

[9] T. Dunst, A.K. Majee, A. Prohl, G. Vallet, On Stochastic Optimal Control in Ferromagnetism. Arch. Ration. Mech. Anal. 233 (2019) 1383–1440. | MR | Zbl | DOI

[10] X. Fernique, Un modèle presque sûr pour la convergence en loi. (French) [An almost sure model for weak convergence]. C. R. Acad. Sci. 306 (1988) 335–338. | MR | Zbl

[11] W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert space approach. Mathematical Research, Vol. 85. Akademie-Verlag, Berlin (1995). | MR | Zbl

[12] I. Gyöngy and N. Krylov, Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105 (1996) 143–158. | MR | Zbl | DOI

[13] N. Ikeda, and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. NorthHolland Publishing Company, Amsterdam (1981). | MR | Zbl

[14] A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces. Theory Probab. Appl. 42 (1998) 164–174. | MR | Zbl | DOI

[15] W. Liu and M. Röckner, Stochastic partial differential equations: an introduction. Springer, Cham (2015). | MR

[16] M. Métivier, Stochastic partial differential equations in infinite dimensional spaces. Scuola Normale Superiore, Pisa (1988). | MR | Zbl

[17] M. Métivier and M. Viot, On weak solutions of stochastic partial differential equations. Vol. 1322 of Lect. Notes Math. (1988) 139–150. | MR | Zbl | DOI

[18] R. Mikulevicius and B.L. Rozovskii, Global L2-solutions of stochastic Navier-Stokes equations. Ann. Probab. 33 (2005) 137–176. | MR | Zbl | DOI

[19] E. Motyl, Stochastic Navier-Stokes Equations Driven by Lévy Noise in Unbounded 3D Domains. Potential Anal. 38 (2013) 863–912. | MR | Zbl

[20] E. Nabana, Uniqueness for positive solutions of p -Laplacian problem in an annulus. Ann. Fac. Sci. Toulouse Math. 8 (1999) 143–154. | MR | Zbl | mathdoc-id | DOI

[21] N. Nagase and M. Nisio, Optimal controls for stochastic partial differential equations. SIAM. Control Optim. 28 (1990) 186–213. | MR | Zbl | DOI

[22] M. Ondreját, Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Mathematicae 426 (2004) 1–63. | MR | Zbl | DOI

[23] E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones. Ph.D. thesis, University of Paris Sud, France (1975).

[24] K.R. Parthasarathy, Probability measures on metric spaces. Academic Press, New York (1967). | MR | Zbl

[25] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2007). | MR | Zbl

[26] T. Roubíček, Nonlinear Partial Differential Equations with Applications. Springer, Basel (2013). | MR | Zbl | DOI

[27] A.V. Skorokhod, Limit theorems for stochastic processes. Theor. Probab. Appl. 1 (1956) 261–290. | MR | Zbl | DOI

[28] G. Vallet and A. Zimmermann, Well-posedness for a pseudomonotone evolution problem with multiplicative noise. J. Evol. Equ. 19 (2019) 153–202. | MR | Zbl | DOI

[29] A.W. Van Der Vaart and J.A. Wellner, Weak convergence and empirical processes with applications to statistics. Springer Series in Statistics. Springer-Verlag, New York (1996). | MR | Zbl

[30] S. Watanabe and T. Yamada, On the uniqueness of solutions of stochastic differential equations. II. J. Math. Kyoto Univ. 11 (1971) 155–167. | MR | Zbl

[31] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear diffusion equations. World Scientific Publising, Singapore (2001). | Zbl | DOI

[32] J.N. Zhao, On the Cauchy problem and initial traces for the evolution p-laplacian equation with strongly nonlinear sources. J. Differ. Equ. 121 (1995) 329–383. | MR | Zbl | DOI

Cité par Sources :