Oriented distance point of view on random sets
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 84.

Voir la notice de l'article provenant de la source Numdam

Motivated by free boundary problems under uncertainties, we consider the oriented distance function as a way to define the expectation for a random compact or open set. In order to provide a law of large numbers and a central limit theorem for this notion of expectation, we also address the question of the convergence of the level sets of f$$ to the level sets of f when (f$$) is a sequence of functions uniformly converging to f. We provide error estimates in term of Hausdorff convergence. We illustrate our results on a free boundary problem.

DOI : 10.1051/cocv/2020007
Classification : 49Q10, 60D05
Keywords: Random sets, continuity of level sets, oriented distance functions, law of large numbers, central limit theorem, free boundary problem
@article{COCV_2020__26_1_A84_0,
     author = {Dambrine, M. and Puig, B.},
     title = {Oriented distance point of view on random sets},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020007},
     mrnumber = {4167084},
     zbl = {1459.60020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020007/}
}
TY  - JOUR
AU  - Dambrine, M.
AU  - Puig, B.
TI  - Oriented distance point of view on random sets
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020007/
DO  - 10.1051/cocv/2020007
LA  - en
ID  - COCV_2020__26_1_A84_0
ER  - 
%0 Journal Article
%A Dambrine, M.
%A Puig, B.
%T Oriented distance point of view on random sets
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020007/
%R 10.1051/cocv/2020007
%G en
%F COCV_2020__26_1_A84_0
Dambrine, M.; Puig, B. Oriented distance point of view on random sets. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 84. doi : 10.1051/cocv/2020007. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2020007/

[1] G. Allaire, E. Cancès and J.-L. Vié, Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. Struct. Multidiscip. Optim. 54 (2016) 1245–1266. | MR | DOI

[2] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | MR | Zbl | DOI

[3] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105–144. | MR | Zbl

[4] A. Araujo and E. Giné, The central limit theorem for real and Banach valued random variables. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-Chichester-Brisbane (1980). | MR | Zbl

[5] A. Beurling, On free boundary problems for the laplace equation. Sem. on Analytic Functions. Inst. for Advanced Study Princeton (1957) 248–263. | Zbl

[6] P. Billingsley, Convergence of probability Measures. Wiley, New York (1968). | MR | Zbl

[7] J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: Subgradient flows, Talweg, convexity. Trans. Am. Math. Soc. 362 (2009) 12. | MR | Zbl | DOI

[8] P. Cardaliaguet and O. Ley, Some flows in shape optimization. Arch. Ration. Mech. Anal. 183 (2007) 21–58. | MR | Zbl | DOI

[9] P. Cardaliaguet and O. Ley, On the energy of a flow arising in shape optimization. Interfaces Free Bound. 10 (2008) 223–243. | MR | Zbl | DOI

[10] G. Da Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems. In Vol. 229 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1996). | MR | Zbl

[11] M. Dambrine, H. Harbrecht, M.D. Peters and B. Puig, On Bernoulli’s free boundary problem with a random boundary. Int. J. Uncertain. Quantif . 7 (2017) 335–353. | MR | Zbl | DOI

[12] M.C. Delfour and J.-P. Zolésio, Shapes and geometries. Metrics, analysis, differential calculus, and optimization. In Vol. 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition 2011. | MR | Zbl

[13] M. Flucher and M. Rumpf, Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486 (1997) 165–204. | MR | Zbl

[14] M. Hayouni, A. Henrot and N. Samouh, On the Bernoulli free boundary problem and related shape optimization problems. Interfaces Free Bound. 3 (2001) 1–13. | MR | Zbl | DOI

[15] A. Henrot and M. Pierre, Shape variation and optimization, A geometrical analysis, English version of the French publication [MR2512810] with additions and updates. In Vol. 28 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2018). | MR | Zbl

[16] A. Henrot and H. Shahgholian, Convexity of free boundaries with Bernoulli type boundary condition. Nonlinear Anal. 28 (1997) 815–823. | MR | Zbl | DOI

[17] H. Jankowski and L. Stanberry, Expectations of random sets and their boundaries using oriented distance functions. J. Math. Imaging Vision 36 (2010) 291–303. | MR | Zbl | DOI

[18] H. Jankowski and L. Stanberry, Confidence regions for means of random sets using oriented distance functions. Scand. J. Stat. 39 (2012) 340–357. | MR | Zbl | DOI

[19] D.G. Kendall, Foundations of a theory of random sets. Wiley, London (1974) 322–376. | MR | Zbl

[20] H. Kunita, Stochastic flows and stochastic differential equations. In Vol. 24 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990). | MR | Zbl

[21] G. Matheron, Ensembles fermés aléatoires, ensembles semi-Markoviens et polyèdres poissoniens. Adv. Appl. Probab. 4 (1972) 508–541. | MR | Zbl | DOI

[22] G. Matheron, Random sets and integral geometry. With a foreword by Geoffrey S. Watson, Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-London-Sydney (1975). | MR | Zbl

[23] S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. | MR | Zbl | DOI

[24] D. Tepper, Free boundary problem. SIAM J. Math. Anal. 5 (1974) 841–846. | MR | Zbl | DOI

[25] D. Tepper, On a free boundary problem, the Starlike case. SIAM J. Math. Anal. 6 (1975) 503–505. | MR | Zbl | DOI

Cité par Sources :