Erratum to: A variational approach to a stationary free boundary problem modeling MEMS
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 54.

Voir la notice de l'article provenant de la source Numdam

An incomplete argument in the proof of Theorem 3.4 from Ph. Laurençot and Ch. Walker [ESAIM: COCV 22 (2016) 417–438] is corrected.

DOI : 10.1051/cocv/2019060
Classification : 35J35, 35R35, 35Q74
Keywords: MEMS, stationary solution, constrained minimization

Laurençot, Philippe 1 ; Walker, Christoph 1

1
@article{COCV_2019__25__A54_0,
     author = {Lauren\c{c}ot, Philippe and Walker, Christoph},
     title = {Erratum to: {A} variational approach to a stationary free boundary problem modeling {MEMS}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2019060},
     zbl = {1437.35246},
     mrnumber = {4019759},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019060/}
}
TY  - JOUR
AU  - Laurençot, Philippe
AU  - Walker, Christoph
TI  - Erratum to: A variational approach to a stationary free boundary problem modeling MEMS
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019060/
DO  - 10.1051/cocv/2019060
LA  - en
ID  - COCV_2019__25__A54_0
ER  - 
%0 Journal Article
%A Laurençot, Philippe
%A Walker, Christoph
%T Erratum to: A variational approach to a stationary free boundary problem modeling MEMS
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019060/
%R 10.1051/cocv/2019060
%G en
%F COCV_2019__25__A54_0
Laurençot, Philippe; Walker, Christoph. Erratum to: A variational approach to a stationary free boundary problem modeling MEMS. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 54. doi : 10.1051/cocv/2019060. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019060/

[1] Ph. Laurençot and Ch. Walker, Sign-preserving property for some fourth-order elliptic operators in one dimension or in radial symmetry. J. Anal. Math. 127 (2015) 69–89. | Zbl | MR | DOI

[2] Ph. Laurençot and Ch. Walker, A variational approach to a stationary free boundary problem modeling MEMS. ESAIM: COCV 22 (2016) 417–438. | Zbl | MR | mathdoc-id

Cité par Sources :