On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 41.

Voir la notice de l'article provenant de la source Numdam

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019057
Classification : 93E20, 49N10, 49N70
Keywords: Mean-field linear-quadratic optimal control problems, time inconsistency, closed-loop equilibrium strategies, Riccati system
@article{COCV_2020__26_1_A41_0,
     author = {Wang, Tianxiao},
     title = {On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019057},
     mrnumber = {4117803},
     zbl = {1442.93048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019057/}
}
TY  - JOUR
AU  - Wang, Tianxiao
TI  - On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019057/
DO  - 10.1051/cocv/2019057
LA  - en
ID  - COCV_2020__26_1_A41_0
ER  - 
%0 Journal Article
%A Wang, Tianxiao
%T On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019057/
%R 10.1051/cocv/2019057
%G en
%F COCV_2020__26_1_A41_0
Wang, Tianxiao. On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 41. doi : 10.1051/cocv/2019057. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019057/

[1] D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63 (2011) 341–356. | MR | Zbl | DOI

[2] J.M. Bismut, Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 14 (1976) 419–444. | MR | Zbl | DOI

[3] T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time. Finance Stoch. 21 (2017) 331–360. | MR | Zbl | DOI

[4] R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations: a limit approach. Ann. Probab. 37 (2009) 1524–1565. | MR | Zbl | DOI

[5] R. Buckdahn, B. Djehiche and J. Li, A general maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64 (2011) 197–216. | MR | Zbl | DOI

[6] R. Buckdahn, J. Li, S. Peng and C. Rainer, Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45 (2017) 824–878. | MR | Zbl | DOI

[7] R. Carmona, F. Delarue and A. Lachapelle, Control of McKean-Vlasov versus mean field games. Math. Fin. Econ. 7 (2013) 131–166. | MR | Zbl | DOI

[8] S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J. Control Optim. 36 (1998) 1685–1702. | MR | Zbl | DOI

[9] D. Dawson, Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Statist. Phys. 31 (1983) 29–85. | MR | DOI

[10] Y. Hu, H. Jin and X. Zhou, Time-inconsistent stochastic linear-quadratic control. SIAM J. Control Optim. 50 (2012) 1548–1572. | MR | Zbl | DOI

[11] Y. Hu, H. Jin and X. Zhou, Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium. SIAM J. Control Optim. 55 (2017) 1261–1279. | MR | Zbl | DOI

[12] M. Huang, R. Malhame and P. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–252. | MR | Zbl | DOI

[13] M. Kac, Foundations of kinetic theory, in Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability, Vol. 3 University of California Press, California (1956) 171–197. | MR | Zbl

[14] X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Prob. Uncer. Quan Risk 1 (2016) 2. | MR | Zbl | DOI

[15] H. Mckean, A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56 (1966) 1907–1911. | MR | Zbl | DOI

[16] T. Meyer-Brandis, B. Øksendal and X. Zhou, A mean-field stochastic maximum principle via Malliavin calculus. Stochastics 84 (2012) 643–666. | MR | Zbl | DOI

[17] S. Tang, General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53–75. | MR | Zbl | DOI

[18] T. Wang, Equilibrium controls in time inconsistent stochastic linear quadratic problems. Appl. Math. Optim. 81 (2020) 591–619. | MR | Zbl | DOI

[19] T. Wang, Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Math. Control Relat. Field 9 (2019) 385–409. | MR | Zbl | DOI

[20] W. Wonham, On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968) 681–697. | MR | Zbl | DOI

[21] Q. Wei, J. Yong and Z. Yu, Time-inconsistent recursive stochastic optimal control problems. SIAM J. Control Optim. 55 (2017) 4156–4201. | MR | Zbl | DOI

[22] J. Yong, Time-inconsistent optimal control problem and the equilibrium HJB equation. Math. Control Related Fields 2 (2012) 271–329. | MR | Zbl | DOI

[23] J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations. SIAM J. Control Optim. 51 (2013) 2809–2838. | MR | Zbl | DOI

[24] J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations – time-consistent solutions. Trans. Amer. Math. Soc. 369 (2017) 5467–5523. | MR | Zbl | DOI

[25] J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). | MR | Zbl | DOI

Cité par Sources :

This work is supported in part by NSF of China (Grant 11401404, 11471231, 11231007) and the Fundamental Research Funds for the central Universities (YJ201605).