Voir la notice de l'article provenant de la source Numdam
An optimal control problem subject to an elliptic obstacle problem is studied. We obtain a numerical approximation of this problem by discretising the PDE obtained via a Moreau–Yosida type penalisation. For the resulting discrete control problem we provide a condition that allows to decide whether a solution of the necessary first order conditions is a global minimum. In addition we show that the corresponding result can be transferred to the limit problem provided that the above condition holds uniformly in the penalisation and discretisation parameters. Numerical examples with unique global solutions are presented.
@article{COCV_2020__26_1_A64_0, author = {Ali, Ahmad Ahmad and Deckelnick, Klaus and Hinze, Michael}, title = {Global minima for optimal control of the obstacle problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019039}, mrnumber = {4150227}, zbl = {1448.49004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019039/} }
TY - JOUR AU - Ali, Ahmad Ahmad AU - Deckelnick, Klaus AU - Hinze, Michael TI - Global minima for optimal control of the obstacle problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019039/ DO - 10.1051/cocv/2019039 LA - en ID - COCV_2020__26_1_A64_0 ER -
%0 Journal Article %A Ali, Ahmad Ahmad %A Deckelnick, Klaus %A Hinze, Michael %T Global minima for optimal control of the obstacle problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019039/ %R 10.1051/cocv/2019039 %G en %F COCV_2020__26_1_A64_0
Ali, Ahmad Ahmad; Deckelnick, Klaus; Hinze, Michael. Global minima for optimal control of the obstacle problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 64. doi : 10.1051/cocv/2019039. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019039/
[1] Global minima for semilinear optimal control problems. Comput. Optim. Appl. 65 (2016) 261–288. | MR | Zbl | DOI
, and ,[2] Error analysis for global minima of semilinear optimal control problems. Math. Control Related Fields 8 (2018) 195–215. | MR | Zbl | DOI
, and ,[3] Optimal control of variational inequalities. In Vol. 100 of Research Notes in Mathematics. Pitman, Boston (1984). | MR | Zbl
,[4] Numerical methods for nonlinear partial differential equations. Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). | MR | Zbl | DOI
,[5] Optimal control of obstacle problems: existence of Lagrange multipliers. ESAIM: COCV 5 (2000) 45–70. | MR | Zbl | mathdoc-id
and ,[6] The mathematical theory of finite element methods. Vol. 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008). | MR | Zbl | DOI
and ,[7] Inverse coefficient problems for variational inequalities: optimality conditions and numerical realization. ESAIM: M2AN 35 (2001) 129–152. | MR | Zbl | mathdoc-id | DOI
,[8] A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl. 50 (2011) 111–145. | MR | Zbl | DOI
and ,[9] Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM: COCV 20 (2014) 524–546. | MR | Zbl | mathdoc-id
, and ,[10] Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41 (2000) 343–364. | MR | Zbl | DOI
and ,[11] Path–following for optimal control of stationary variational inequalities. Comput. Opt. Appl. 51 (2012) 1345–1373. | MR | Zbl | DOI
and ,[12] Sufficient optimality conditions and semi–smooth Newton methods for optimal control of stationary variational inequalities. ESAIM: COCV 18 (2012) 520–547. | MR | Zbl | mathdoc-id
and ,[13] A priori finite element error analysis for optimal control of the obstacle problem. SIAM J. Numer. Anal. 51 (2013) 605–628. | MR | Zbl | DOI
and ,[14] Adaptive optimal control of the obstacle problem. SIAM J. Sci. Comput. 37 (2015) 918–945. | MR | Zbl | DOI
, and ,[15] Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22 (1976) 130–185. | MR | Zbl | DOI
,[16] Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984) 466–476. | MR | Zbl | DOI
and ,[17] Generalized derivatives for the solution operator of the obstacle problem. Preprint (2018). | arXiv | MR
and ,[18] Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM: M2AN 47 (2013) 771–787. | MR | Zbl | mathdoc-id | DOI
and ,[19] Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Optim. 24 (2014) 1914–1932. | MR | Zbl | DOI
,Cité par Sources :