Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 50.

Voir la notice de l'article provenant de la source Numdam

In this paper, we observe how the heat equation in a noncylindrical domain can arise as the asymptotic limit of a parabolic problem in a cylindrical domain, by adding a potential that vanishes outside the limit domain. This can be seen as a parabolic version of a previous work by the first and last authors, concerning the stationary case [Alvarez-Caudevilla and Lemenant, Adv. Differ. Equ. 15 (2010) 649-688]. We provide a strong convergence result for the solution by use of energetic methods and Γ-convergence technics. Then, we establish an exponential decay estimate coming from an adaptation of an argument due to B. Simon.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019023
Classification : 35A05, 35A15
Keywords: Parabolic problems, Gamma-convergence, energetic methods, variational methods, partial differential equations
@article{COCV_2020__26_1_A50_0,
     author = {\`Alvarez-Caudevilla, Pablo and Bonnivard, Matthieu and Lemenant, Antoine},
     title = {Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019023},
     mrnumber = {4144107},
     zbl = {1450.35132},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019023/}
}
TY  - JOUR
AU  - Àlvarez-Caudevilla, Pablo
AU  - Bonnivard, Matthieu
AU  - Lemenant, Antoine
TI  - Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019023/
DO  - 10.1051/cocv/2019023
LA  - en
ID  - COCV_2020__26_1_A50_0
ER  - 
%0 Journal Article
%A Àlvarez-Caudevilla, Pablo
%A Bonnivard, Matthieu
%A Lemenant, Antoine
%T Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019023/
%R 10.1051/cocv/2019023
%G en
%F COCV_2020__26_1_A50_0
Àlvarez-Caudevilla, Pablo; Bonnivard, Matthieu; Lemenant, Antoine. Asymptotic limit of linear parabolic equations with spatio-temporal degenerated potentials. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 50. doi : 10.1051/cocv/2019023. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019023/

[1] P. Álvarez-Caudevilla and A. Lemenant, Asymptotic analysis for some linear eigenvalue problems via Gamma-convergence. Adv. Differ. Equ. 15 (2010) 649–688. | MR | Zbl

[2] P. Álvarez-Caudevilla and J. López-Gómez, Semiclassical analysis for highly degenerate potentials. Bull. Am. Math. Soc. 136 (2008) 665–675. | MR | Zbl

[3] I. Antón and J. López-Gómez, The maximum principle for cooperative periodic-parabolic systems and the existence of principle eigenvalues, in World Congress of Nonlinear Analysts ’92 (Tampa, FL, 1992). de Gruyter, Berlin (1996) 323–334. | MR | Zbl | DOI

[4] L. Boudin, C. Grandmont and A. Moussa, Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain. J. Differ. Equ. 262 (2017) 1317–1340. | MR | Zbl | DOI

[5] R.M. Brown, W. Hu and G.M. Lieberman, Weak solutions of parabolic equations in non-cylindrical domains. Proc. Am. Math. Soc. 125 (1997) 1785–1792. | MR | Zbl | DOI

[6] S.-S. Byun and L. Wang, Parabolic equations in time dependent Reifenberg domains. Adv. Math. 212 (2007) 797–818. | MR | Zbl | DOI

[7] J. Calvo, M. Novaga and G. Orlandi, Parabolic equations in time dependent domains. J. Evol. Eqs. 17 (2017) 781–804. | MR | Zbl | DOI

[8] D. Daners and C. Thornett, Periodic-parabolic eigenvalue problems with a large parameter and degeneration. J. Differ. Equ. 261 (2016) 273–295. | MR | Zbl | DOI

[9] Y. Du and R. Peng, The periodic logistic equation with spatial and temporal degeneracies. Trans. Am. Math. Soc. 364 (2012) 6039–6070. | MR | Zbl | DOI

[10] L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society, RI (1998). | MR | Zbl

[11] J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J.C. Sabina De Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs. Arch. Ration. Mech. Anal. 145 (1998) 261–289. | MR | Zbl | DOI

[12] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity. Vol. 247 of Pitman Research Notes in Mathematics. Longman Scientific and Technical, Harlow (1991). | MR | Zbl

[13] G. Savaré, Parabolic problems with mixed variable lateral conditions: an abstract approach. J. Math. Pures Appl. 76 (1997) 321–351. | MR | Zbl | DOI

[14] B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math. 120 (1984) 89–118. | MR | Zbl | DOI

Cité par Sources :