On the construction of nearly time optimal continuous feedback laws around switching manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 4.

Voir la notice de l'article provenant de la source Numdam

In this paper, we address the question of the construction of a nearly time optimal feedback law for a minimum time optimal control problem, which is robust with respect to internal and external perturbations. For this purpose we take as starting point an optimal synthesis, which is a suitable collection of optimal trajectories. The construction we exhibit depends exclusively on the initial data obtained from the optimal feedback which is assumed to be known.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019002
Classification : 49J15, 49J30, 93B52
Keywords: Feedback controls, nearly time optimal control, minimum time problems
@article{COCV_2020__26_1_A4_0,
     author = {Ancona, Fabio and Hermosilla, Cristopher},
     title = {On the construction of nearly time optimal continuous feedback laws around switching manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019002},
     mrnumber = {4055456},
     zbl = {1440.49041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019002/}
}
TY  - JOUR
AU  - Ancona, Fabio
AU  - Hermosilla, Cristopher
TI  - On the construction of nearly time optimal continuous feedback laws around switching manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019002/
DO  - 10.1051/cocv/2019002
LA  - en
ID  - COCV_2020__26_1_A4_0
ER  - 
%0 Journal Article
%A Ancona, Fabio
%A Hermosilla, Cristopher
%T On the construction of nearly time optimal continuous feedback laws around switching manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019002/
%R 10.1051/cocv/2019002
%G en
%F COCV_2020__26_1_A4_0
Ancona, Fabio; Hermosilla, Cristopher. On the construction of nearly time optimal continuous feedback laws around switching manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 4. doi : 10.1051/cocv/2019002. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2019002/

[1] F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization. ESAIM: COCV 4 (1999) 445–471. | MR | Zbl | mathdoc-id

[2] F. Ancona and A. Bressan, Flow stability of patchy vector fields and robust feedback stabilization. SIAM J. Cont. Optim. 41 (2002) 1455–1476. | MR | Zbl | DOI

[3] F. Ancona and A. Bressan, Nearly time optimal stabilizing patchy feedbacks. Ann. Inst. Henri Poincaré (C) Nonlinear Anal. 24 (2007) 279–310. | MR | Zbl | mathdoc-id | DOI

[4] D. Anisi, J. Hamberg and X. Xiaoming, Nearly time optimal paths for a ground vehicle. J. Cont. Theory Appl. 1 (2003) 2–8. | MR | DOI

[5] J.-P. Aubin and A. Cellina, Differential inclusions: Set-valued maps and viability theory, in Vol. 264 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, Inc. (1984). | MR | Zbl | DOI

[6] L. Berkovitz, Optimal feedback controls. SIAM J. Cont. Optim. 27 (1989) 991–1006. | MR | Zbl | DOI

[7] V. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming principle. SIAM J. Cont. Optim. 4 (1966) 326–361. | MR | Zbl | DOI

[8] U. Boscain and B. Piccoli, Optimal syntheses for control systems on 2-D manifolds, in Vol. 43 of Mathématiques & Applications. Springer (2004). | MR | Zbl

[9] R. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory. Birkhäuser Boston (1983) 181–191. | MR | Zbl

[10] P. Brunovskỳ, Every normal linear system has a regular time optimal synthesis. Math. Slov. 28 (1978) 81–100. | MR | Zbl

[11] P. Brunovskỳ, Existence of regular synthesis for general control problems. J. Differ. Equ. 38 (1980) 317–343. | MR | Zbl | DOI

[12] I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318 (1990) 643–683. | MR | Zbl | DOI

[13] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Optimal times for constrained nonlinear control problems without local controllability. Appl. Math. Optim. 36 (1997) 21–42. | MR | Zbl | DOI

[14] F. Clarke, Discontinuous feedback and nonlinear systems, in 8th IFAC Symposium on Nonlinear Control Systems (2010).

[15] F. Clarke, Functional analysis, calculus of variations and optimal control, in Vol. 264 of Graduate Text in Mathematics. Springer (2013). | MR | Zbl

[16] F.H. Clarke, L. Rifford and R. Stern, Feedback in state constrained optimal control. ESAIM: COCV 7 (2002) 97–133. | MR | Zbl | mathdoc-id

[17] T. Faulwasser, M. Korda, C. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica 81 (2017) 297–304. | MR | Zbl | DOI

[18] O. Hájek, Terminal manifolds and switching locus. Math. Syst. Theory 6 (1972) 289–301. | MR | Zbl | DOI

[19] C. Hermosilla, Stratified discontinuous differential equations and sufficient conditions for robustness. Discr. Continu. Dyn. Syst. A 35 (2015) 4415–4437. | MR | Zbl | DOI

[20] C. Hermosilla and H. Zidani, Infinite horizon problems on stratifiable state constraints sets. J. Differ. Equ. 258 (2015) 1430–1460. | MR | Zbl | DOI

[21] C. Hermosilla, P. Wolenski and H. Zidani, The Mayer and Minimum time problems with stratified state constraints. Set-Valued Variat. Anal. 26 (2018) 643–662. | MR | Zbl | DOI

[22] H. Ishii and S. Koike, On ε-optimal controls for state constraint problems. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 17 (2000) 473–502. | MR | Zbl | mathdoc-id | DOI

[23] J.M. Lee, Introduction to smooth manifolds, in Vol. 218 of Graduate Text in Mathematics. Springer (2013). | MR | Zbl | DOI

[24] K. Mall and M.J. Grant, Epsilon-trig regularization method for bang-bang optimal control problems. J. Optim. Theory Appl. 174 (2017) 500–517. | MR | Zbl | DOI

[25] A. Marigo and B. Piccoli, Regular syntheses and solutions to discontinuous ODEs. ESAIM: COCV 7 (2002) 291–307. | MR | Zbl | mathdoc-id

[26] A. Marigo and B. Piccoli, Safety controls and applications to the Dubins’ car. Nonlin. Differ. Equ. Appl. 11 (2004) 73–94. | MR | Zbl | DOI

[27] L.D. Meeker, Local time optimal feedback control of strictly normal two-input linear systems. SIAM J. Cont. Optim. 27 (1989) 53–82. | MR | Zbl | DOI

[28] B. Piccoli, Optimal syntheses for state constrained problems with application to optimization of Cancer therapies. Math. Control Related Fields 2 (2012) 383–398. | MR | Zbl | DOI

[29] B. Piccoli and H.J. Sussmann, Regular synthesis and sufficiency conditions for optimality. SIAM J. Cont. Optim. 39 (2000) 359–410. | MR | Zbl | DOI

[30] F.S. Priuli, State constrained patchy feedback stabilization. Math. Control Related Fields 5 (2015) 141–163. | MR | Zbl | DOI

[31] L. Rifford, Semiconcave control-Lyapunov functions and stabilizing feedbacks. SIAM J. Cont. Optim. 41 (2002) 659–681. | MR | Zbl | DOI

[32] L. Rifford, Stratified semiconcave control-Lyapunov functions and the stabilization problem. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 22 (2005) 343–384. | MR | Zbl | mathdoc-id | DOI

[33] L. Rifford, On the existence of local smooth repulsive stabilizing feedbacks in dimension three. J. Differ. Equ. 226 (2006) 429–500. | MR | Zbl | DOI

[34] R. Rockafellar, Convex analysis, in Vol. 28 of Princeton Mathematical Series. Princeton University Press (1970). | MR | Zbl

[35] J. Rowland and R. Vinter, Construction of optimal feedback controls. Syst. Cont. Lett. 16 (1991) 357–367. | MR | Zbl | DOI

[36] C. Silva and E. Trélat, Smooth regularization of bang-bang optimal control problems. IEEE Trans. Autom. Cont. 55 (2010) 2488–2499. | MR | Zbl | DOI

[37] H. Soner, Optimal control with state-space constraint I. SIAM J. Cont. Optim. 24 (1986) 552–561. | MR | Zbl | DOI

[38] P. Spinelli and G.S. Rakotonirainy, Minimum Time Problem Synthesis. Syst. Cont. Lett. 10 (1988) 281–290. | MR | Zbl | DOI

[39] H. Sussmann, Regular synthesis for time optimal control of single-input real analytic systems in the plane. SIAM J. Cont. Optim. 25 (1987) 1145–1162. | MR | Zbl | DOI

Cité par Sources :

This work was supported by the European Union under the 7th Framework Programme FP7-PEOPLE-2010-ITN Grant agreement number 264735-SADCO.

C. Hermosilla was supported by CONICYT-Chile through FONDECYT grant number 3170485 and Proyecto REDES ETAPA INICIAL, Convocatoria 2017 REDI170200.