Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 62.

Voir la notice de l'article provenant de la source Numdam

In this paper we extend the duality theory of the multi-marginal optimal transport problem for cost functions depending on a decreasing function of the distance (not necessarily bounded). This class of cost functions appears in the context of SCE Density Functional Theory introduced in Strong-interaction limit of density-functional theory by Seidl [Phys. Rev. A 60 (1999) 4387].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018062
Classification : 49N15, 49J45, 49K30
Keywords: Multi-marginal optimal transport, repulsive costs, Kantorovich duality

Gerolin, Augusto 1 ; Kausamo, Anna 1 ; Rajala, Tapio 1

1
@article{COCV_2019__25__A62_0,
     author = {Gerolin, Augusto and Kausamo, Anna and Rajala, Tapio},
     title = {Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018062},
     zbl = {1439.49059},
     mrnumber = {4023129},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018062/}
}
TY  - JOUR
AU  - Gerolin, Augusto
AU  - Kausamo, Anna
AU  - Rajala, Tapio
TI  - Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018062/
DO  - 10.1051/cocv/2018062
LA  - en
ID  - COCV_2019__25__A62_0
ER  - 
%0 Journal Article
%A Gerolin, Augusto
%A Kausamo, Anna
%A Rajala, Tapio
%T Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018062/
%R 10.1051/cocv/2018062
%G en
%F COCV_2019__25__A62_0
Gerolin, Augusto; Kausamo, Anna; Rajala, Tapio. Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 62. doi : 10.1051/cocv/2018062. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018062/

[1] U. Bindini and L. De Pascale, Optimal transport with Coulomb cost and the semiclassical limit of density functional theory. J. Éc. Polytech. Math. 4 (2017) 909–934. | Zbl | MR | DOI

[2] A. Braides, Gamma-Convergence for Beginners, Vol. 22. Clarendon Press, Oxford (2002). | Zbl | MR | DOI

[3] G. Buttazzo, T. Champion and L. De Pascale, Continuity and estimates for multimarginal optimal transportation problems with singular costs. Appl. Math. Optim. 78 (2018) 185–200. | Zbl | MR | DOI

[4] G. Buttazzo, L. De Pascale and P. Gori-Giorgi, Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85 (2012) 062502. | DOI

[5] H. Chen, G. Friesecke and C. B. Mendl, Numerical methods for a kohn–sham density functional model based on optimal transport. J. Chem. Theory Comput. 10 (2014) 4360–4368. | DOI

[6] M. Colombo and F. Stra, Counterexamples to multimarginal optimal transport maps with coulomb cost and radial measures. Math. Models Methods Appl. Sci. 26 (2016) 1025–1049. | Zbl | MR | DOI

[7] L. Cort, D. Karlsson, G. Lani and R. Van Leeuwen, Time-dependent density-functional theory for strongly interacting electrons. Phys. Rev. A 95 (2017) 042505. | DOI

[8] C. Cotar, G. Friesecke and C. Klüppelberg, Density functional theory and optimal transportation with coulomb cost. Comm. Pure Appl. Math. 66 (2013) 548–599. | Zbl | MR | DOI

[9] C. Cotar, G. Friesecke and C. Klüppelberg, Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional. Arch. Ration. Mech. Anal. 228 (2018) 891–922. | Zbl | MR | DOI

[10] L. De Pascale, Optimal transport with coulomb cost. approximation and duality. ESAIM: M2AN 49 (2015) 1643–1657. | Zbl | MR | mathdoc-id | DOI

[11] S. Di Marino, L. De Pascale and M. Colombo, Multimarginal optimal transport maps for 1-dimensional repulsive costs. Can. J. Math. 67 (2015) 350–368. | Zbl | MR | DOI

[12] S. Di Marino, A. Gerolin and L. Nenna, Topological Optimization and Optimal Transport In the Applied Sciences. De Gruyter (2017).

[13] G. Friesecke, C. B. Mendl, B. Pass, C. Cotar and C. Klüppelberg, N-density representability and the optimal transport limit of the hohenberg-kohn functional. J. Chem. Phys. 139 (2013) 164109. | DOI

[14] W. Gangbo and V. Oliker, Existence of optimal maps in the reflector-type problems. ESAIM: COCV 13 (2007) 93–106. | Zbl | MR | mathdoc-id

[15] A. Gerolin, A. Kausamo and T. Rajala, Non-existence of optimal transport maps for the multi-marginal repulsive harmonic cost. Preprint (2018). | arXiv | MR

[16] P. Gori-Giorgi, M. Seidl and G. Vignale, Density-functional theory for strongly interacting electrons. Phys. Rev. Lett. 103 (2009) 166402. | DOI

[17] W. E. Hartnett and A. H. Kruse, Differentiation of set functions using Vitali coverings. Trans. Amer. Math. Soc. 96 (1960) 185–209. | Zbl | MR | DOI

[18] P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864. | MR | DOI

[19] A. Käenmäki, T. Rajala and V. Suomala, Existence of doubling measures via generalised nested cubes. Proc. Am. Math. Soc. 140 (2012) 3275–3281. | Zbl | MR | DOI

[20] H. G. Kellerer, Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheor. Verw. Geb. 67 (1984) 399–432. | Zbl | MR | DOI

[21] G. Lani, S. Di Marino, A. Gerolin, R. Van Leeuwen, and P. Gori-Giorgi, The adiabatic strictly-correlated-electrons functional: kernel and exact properties. Phys. Chem. Chem. Phys. 18 (2016) 21092–21101. | DOI

[22] M. Levy, 2016 Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Nati. Acad. Sci. 12 (76) 6062–6065. | MR

[23] M. Lewin, Semi-classical limit of the Levy-Lieb functional in density functional theory. C. R. Math. Acad. Sci. Paris 356 (2018) 449–455. | Zbl | MR | DOI

[24] E. H. Lieb, Density functionals for coulomb systems, in Inequalities. Springer, Berlin, Heidelberg (2002) 269–303. | DOI

[25] F. Malet and P. Gori-Giorgi, Strong in Kohn-Sham density functional theory. Phys. Rev. Lett. 109 (2012) 246402. | DOI

[26] M. Seidl, Strong-interaction limit of density-functional theory. Phys. Rev. A, 60 (1999) 4387. | DOI

[27] M. Seidl, S. Di Marino, A. Gerolin, L. Nenna, K. Giesbertz and P. Gori-Giorgi, The strictly-correlated electron functional for spherically symmetric systems revisited. Preprint (2017). | arXiv

[28] M. Seidl, P. Gori-Giorgi and A. Savin, Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities. Phys. Rev. A 75 (2007) 042511. | DOI

[29] C. Villani. Optimal Transport: old and New, Vol. 338. Springer Science & Business Media, Berlin, Heidelberg (2008). | Zbl

[30] X.-J. Wang, On the design of a reflector antenna ii. Calc. Var. Partial Differ. Equ. 20 (2004) 329.–341. | Zbl | MR | DOI

Cité par Sources :