Voir la notice de l'article provenant de la source Numdam
This paper provides results for variational eigencurves associated with self-adjoint linear elliptic boundary value problems. The elliptic problems are treated as a general two-parameter eigenproblem for a triple (a, b, m) of continuous symmetric bilinear forms on a real separable Hilbert space V . Geometric characterizations of eigencurves associated with (a, b, m) are obtained and are based on their variational characterizations described here. Continuity, differentiability, as well as asymptotic, results for these eigencurves are proved. Finally, two-parameter Robin–Steklov eigenproblems are treated to illustrate the theory.
Rivas, Mauricio A. 1 ; Robinson, Stephen B. 1
@article{COCV_2019__25__A45_0, author = {Rivas, Mauricio A. and Robinson, Stephen B.}, title = {Eigencurves for linear elliptic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018039}, zbl = {1437.35241}, mrnumber = {4009412}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018039/} }
TY - JOUR AU - Rivas, Mauricio A. AU - Robinson, Stephen B. TI - Eigencurves for linear elliptic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018039/ DO - 10.1051/cocv/2018039 LA - en ID - COCV_2019__25__A45_0 ER -
%0 Journal Article %A Rivas, Mauricio A. %A Robinson, Stephen B. %T Eigencurves for linear elliptic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018039/ %R 10.1051/cocv/2018039 %G en %F COCV_2019__25__A45_0
Rivas, Mauricio A.; Robinson, Stephen B. Eigencurves for linear elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 45. doi : 10.1051/cocv/2018039. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018039/
[1] On principle eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions. Proc. Amer. Math. Soc. (1999) 125–130. | Zbl | MR | DOI
and ,[2] Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM, Philadelphia (2005). | Zbl | MR
, and ,[3] Bases and comparison results for linear elliptic eigenproblems. J. Math. Anal. Appl. 390 (2012) 394–406. | Zbl | MR | DOI
,[4] Representation of solutions of Laplacian boundary value problems on exterior regions. Appl. Math. Optim. 69 (2014) 21–45. | Zbl | MR | DOI
and ,[5] Laplacian eigenproblems on product regions and tensor products of Sobolev spaces. J. Math. Anal. Appl. 435 (2016) 842–859. | Zbl | MR | DOI
and ,[6] Isoperimetric inequalities for the principle eigenvalue of a membrane and the energy of problems with Robin boundary conditions. J. Convex Anal. 22 (2014) 627–640. | Zbl | MR
and ,[7] Eigencurves for two-parameter Sturm–Liouville equations. SIAM Rev. 38 (1996) 27–48. | Zbl | MR | DOI
and ,[8] Variational Methods in Mathematical Physics. Springer-Verlag, Berlin (1992). | Zbl | MR | DOI
and ,[9] On the asymptotic behaviour of the eigenvalues of a Robin problem. Differ. Integ. Equ. 23 (2010) 659–669. | Zbl | MR
and ,[10] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | Zbl | MR
and ,[11] On the eigenvalues of a Robin problem with a large parameter. Math. Bohem. 139 (2014) 341–352. | Zbl | MR | DOI
,[12] Eigenvalue estimates and critical temperatures in zero fields for enhanced surface superconductivity. Z. Angew. Math. Phys. 58 (2007) 224–245. | Zbl | MR | DOI
and ,[13] Perturbation Theory for Linear Operators, 2nd Edn. Springer-Verlag, New York (1976). | Zbl | MR
,[14] The existence of positive solutions for a class of indefinite weight semilinear elliptic boundary value problems. Nonlin. Anal.: Theory Methods. Appl. 39 (2000) 587–597. | Zbl | MR | DOI
and ,[15] Multidimensional reaction diffusion equations with nonlinear boundary conditions. SIAM J. Appl. Math. 58 (1998) 1622–1647. | Zbl | MR | DOI
, and ,[16] Generalized eigenproblem and nonlinear elliptic equations with nonlinear boundary conditions. Proc. R. Soc. Edinburgh 142A (2012) 137–153. | Zbl | MR | DOI
,[17] Steklov-Neumann eigenproblems and nolinear elliptic equations with nonlinear boundary conditions. J. Differ. Equ. 248 (2010) 1212–1229. | Zbl | MR | DOI
and ,Cité par Sources :