Control and stabilization of the periodic fifth order Korteweg-de Vries equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 38.

Voir la notice de l'article provenant de la source Numdam

We establish local exact control and local exponential stability of periodic solutions of fifth order Korteweg-de Vries type equations in H$$(𝕋), s > 2. A dissipative term is incorporated into the control which, along with a propagation of regularity property, yields a smoothing effect permitting the application of the contraction principle.

DOI : 10.1051/cocv/2018033
Classification : 35Q53, 93B05, 93D15
Keywords: Korteweg-de Vries equation, periodic domain, propagation of regularity, exact controllability, stabilization

Flores, Cynthia 1 ; Smith, Derek L. 1

1
@article{COCV_2019__25__A38_0,
     author = {Flores, Cynthia and Smith, Derek L.},
     title = {Control and stabilization of the periodic fifth order {Korteweg-de} {Vries} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018033},
     zbl = {1437.35610},
     mrnumber = {4003462},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018033/}
}
TY  - JOUR
AU  - Flores, Cynthia
AU  - Smith, Derek L.
TI  - Control and stabilization of the periodic fifth order Korteweg-de Vries equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018033/
DO  - 10.1051/cocv/2018033
LA  - en
ID  - COCV_2019__25__A38_0
ER  - 
%0 Journal Article
%A Flores, Cynthia
%A Smith, Derek L.
%T Control and stabilization of the periodic fifth order Korteweg-de Vries equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018033/
%R 10.1051/cocv/2018033
%G en
%F COCV_2019__25__A38_0
Flores, Cynthia; Smith, Derek L. Control and stabilization of the periodic fifth order Korteweg-de Vries equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 38. doi : 10.1051/cocv/2018033. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018033/

[1] F.D. Araruna, R.A. Capistrano-Filho and G.G. Doronin, Energy decay for the modified Kawahara equation posed in a bounded domain. J. Math. Anal. Appl. 385 (2012) 743–756. | Zbl | MR | DOI

[2] D.J. Benney, A general theory for interactions between short and long waves. Stud. Appl. Math. 56 (1976/77) 81–94. | Zbl | MR | DOI

[3] J.L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. Lond. Ser. A 278 (1975) 555–601. | Zbl | MR | DOI

[4] J.L. Bona, S.M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Kortewegde Vries equation posed on a finite domain. Comm. Partial Differential Equations 28 (2003) 1391–1436. | Zbl | MR | DOI

[5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3 (1993) 107–156. | Zbl | MR | DOI

[6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3 (1993) 209–262. | Zbl | MR | DOI

[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋. J. Am. Math. Soc. 16 (2003) 705–749. | Zbl | MR | DOI

[8] J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | Zbl | MR

[9] W. Craig, P. Guyenne and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces. Commun. Pure Appl. Math. 58 (2005) 1587–1641. | Zbl | MR | DOI

[10] B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface. Math. Z. 254 (2006) 729–749. | Zbl | MR | DOI

[11] G.G. Doronin and N.A. Larkin, Kawahara equation in a bounded domain. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 783–799. | Zbl | MR

[12] G. Gao and S.-M. Sun, A Korteweg–de Vries type of fifth-order equations on a finite domain with point dissipation. J. Math. Anal. Appl. 438 (2016) 200–239. | Zbl | MR | DOI

[13] C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19 (1967) 1095–1097. | Zbl | DOI

[14] O. Glass and S. Guerrero, On the controllability of the fifth-order Korteweg-de Vries equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 2181–2209. | Zbl | MR | mathdoc-id | DOI

[15] A. Grünrock, On the hierarchies of higher order mKdV and KdV equations. Cent. Eur. J. Math. 8 (2010) 500–536. | Zbl | MR | DOI

[16] Z. Guo, Global well-posedness of Korteweg-de Vries equation in H−3/4(ℝ). J. Math. Pures Appl. (9) 91 (2009) 583–597. | Zbl | MR | DOI

[17] Z. Guo, C. Kwak and S. Kwon, Rough solutions of the fifth-order KdV equations. J. Funct. Anal. 265 (2013) 2791–2829. | Zbl | MR | DOI

[18] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Vol. 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, New York (1981). | Zbl | MR | DOI

[19] J. Holmer, The initial-boundary value problem for the Kortewegde Vries equation. Comm. Partial Differential Equations 31 (2006) 1151–1190. | Zbl | MR | DOI

[20] A.D. Ionescu and C.E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J. Am. Math. Soc. 20 (2007) 753–798. | Zbl | MR | DOI

[21] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, in Studies in Applied Mathematics. Vol. 8 of Adv. Math. Suppl. Stud. Academic Press, New York (1983) 93–128. | Zbl | MR

[22] T. Kato, Local well-posedness for Kawahara equation. Adv. Differential Equations 16 (2011) 257–287 | Zbl | MR | DOI

[23] T. Kato, Global well-posedness for the Kawahara equation with low regularity. Commun. Pure Appl. Anal. 12 (2013) 1321–1339. | Zbl | MR | DOI

[24] T. Kawahara, Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33 (1972) 260–264. | DOI

[25] C.E. Kenig and D. Pilod, Well-posedness for the fifth-order KdV equation in the energy space. Trans. Am. Math. Soc. 367 (2015) 2551–2612. | Zbl | MR | DOI

[26] C. E. Kenig and D. Pilod, Local well-posedness for the KdV hierarchy at high regularity. Adv. Differential Equations 21 (2016) 801–836. | Zbl | MR | DOI

[27] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46 (1993) 527–620. | Zbl | MR | DOI

[28] C. E. Kenig, G. Ponce and L. Vega, Higher-order nonlinear dispersive equations. Proc. Am. Math. Soc. 122 (1994) 157–166. | Zbl | MR | DOI

[29] C. E. Kenig, G. Ponce and L. Vega, On the hierarchy of the generalized KdV equations, in Singular Limits of Dispersive Waves (Lyon, 1991). Vol. 320 of NATO Adv. Sci. Inst. Ser. B Phys. Plenum, New York (1994) 347–356. | Zbl | MR

[30] N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Differential Integral Equations 22 (2009) 447–464. | Zbl | MR | DOI

[31] C. Kwak, Local well-posedness for the fifth-order KdV equations on 𝕋. J. Differential Equations 260 (2016) 7683–7737. | Zbl | MR | DOI

[32] S. Kwon, On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map. J. Differential Equations 245 (2008) 2627–2659. | Zbl | MR | DOI

[33] N.A. Larkin and M.H. Simões, The kawahara equation on bounded intervals and on a half-line. Nonlinear Anal. Theory Methods Appl. 127 (2015) 397–412. | MR | DOI

[34] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval. ESAIM: COCV 16 (2010) 356–379. | Zbl | MR | mathdoc-id

[35] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3. SIAM J. Math. Anal. 42 (2010) 785–832. | Zbl | MR | DOI

[36] C. Laurent, F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in L2(𝕋). Arch. Rational Mech. Anal. 218 (2015) 1531–1575. | MR | Zbl | DOI

[37] C. Laurent, L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain. Comm. Partial Differential Equations 35 (2010) 707–744. | Zbl | MR | DOI

[38] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21 (1968) 467–490. | Zbl | MR | DOI

[39] F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain. Trans. Am. Math. Soc. 367 (2015) 4595–4626. | MR | Zbl | DOI

[40] L. Molinet, Global well-posedness in L2 for the periodic Benjamin-Ono equation. Am. J. Math. 130 (2008) 635–683. | Zbl | MR | DOI

[41] L. Molinet, J.C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations. SIAM J. Math. Anal. 33 (2001) 982–988. | Zbl | MR | DOI

[42] P.J. Olver, Hamiltonian and non-Hamiltonian models for water waves, in Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983). Vol. 195 of Lecture Notes in Physics. Springer, Berlin (1984) 273–290. | Zbl | MR | DOI

[43] D. Pilod, On the Cauchy problem for higher-order nonlinear dispersive equations. J. Differential Equations 245 (2008) 2055–2077. | Zbl | MR | DOI

[44] G. Ponce, Lax pairs and higher order models for water waves. J. Differential Equations 102 (1993) 360–381. | Zbl | MR | DOI

[45] L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complex. 22 (2009) 647–682. | Zbl | MR | DOI

[46] L. Rosier and B.-Y. Zhang, Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval. SIAM J. Control Optim. 48 (2009) 972–992. | Zbl | MR | DOI

[47] D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Am. Math. Soc. 348 (1996) 3643–3672. | Zbl | MR | DOI

[48] J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differential Equations 66 (1987) 118–139. | Zbl | MR | DOI

[49] M. Schwarz Jr., The initial value problem for the sequence of generalized Korteweg-de Vries equations. Adv. Math. 54 (1984) 22–56. | Zbl | MR | DOI

[50] C.F. Vasconcellos and P.N. Da Silva, Stabilization of the Kawahara equation with localized damping. ESAIM: COCV 17 (2011) 102–116. | Zbl | MR | mathdoc-id

[51] X. Zhao and B.-Y. Zhang, Global controllability and stabilizability of Kawahara equation on a periodic domain. Math. Control Relat. Fields 5 (2015) 335–358. | MR | Zbl | DOI

[52] D. Zhou and B.-Y. Zhang, Initial boundary value problem of the Hamiltonian fifth-order KDV equation on a bounded domain. Adv. Differential Equations 21 (2016) 977–1000. | MR | Zbl

Cité par Sources :