A note on relaxation with constraints on the determinant
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 41.

Voir la notice de l'article provenant de la source Numdam

We consider multiple integrals of the Calculus of Variations of the form E(u) = ∫ W(x, u(x), Du(x)) dx where W is a Carathéodory function finite on matrices satisfying an orientation preserving or an incompressibility constraint of the type, det Du > 0 or det Du = 1, respectively. Under suitable growth and lower semicontinuity assumptions in the u variable we prove that the functional ∫ W$$(x, u(x), Du(x)) dx is an upper bound for the relaxation of E and coincides with the relaxation if the quasiconvex envelope W$$ of W is polyconvex and satisfies p growth from below for p bigger then the ambient dimension. Our result generalises a previous one by Conti and Dolzmann [Arch. Rational Mech. Anal. 217 (2015) 413–437] relative to the case where W depends only on the gradient variable.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018030
Classification : 49J45, 74B20
Keywords: Calculus of variations, nonlinear elasticity

Cicalese, Marco 1 ; Fusco, Nicola 1

1
@article{COCV_2019__25__A41_0,
     author = {Cicalese, Marco and Fusco, Nicola},
     title = {A note on relaxation with constraints on the determinant},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018030},
     mrnumber = {4009552},
     zbl = {1437.49026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018030/}
}
TY  - JOUR
AU  - Cicalese, Marco
AU  - Fusco, Nicola
TI  - A note on relaxation with constraints on the determinant
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018030/
DO  - 10.1051/cocv/2018030
LA  - en
ID  - COCV_2019__25__A41_0
ER  - 
%0 Journal Article
%A Cicalese, Marco
%A Fusco, Nicola
%T A note on relaxation with constraints on the determinant
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018030/
%R 10.1051/cocv/2018030
%G en
%F COCV_2019__25__A41_0
Cicalese, Marco; Fusco, Nicola. A note on relaxation with constraints on the determinant. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 41. doi : 10.1051/cocv/2018030. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018030/

[1] J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. Sect. A 88 (1981) 315–328. | Zbl | MR | DOI

[2] S. Conti and G. Dolzmann, On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Rational Mech. Anal. 217 (2015) 413–437. | MR | Zbl | DOI

[3] I. Ekeland and R. Témam, Convex Analysis and Variational Problems. In Vol. 28 of Classics in Applied Mathematics. SIAM (1999). | Zbl | MR

[4] E. Giusti, Direct Methods in the Calculus of Variations. World Scientific (2003). | Zbl | MR | DOI

[5] S. Müller, Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412 (1990) 20–34. | Zbl | MR

Cité par Sources :