Voir la notice de l'article provenant de la source Numdam
The modeling of fracture problems within geometrically linear elasticity is often based on the space of generalized functions of bounded deformation GSBD$$(Ω), p ∈ (1, ∞), their treatment is however hindered by the very low regularity of those functions and by the lack of appropriate density results. We construct here an approximation of GSBD$$ functions, for p ∈ (1, ∞), with functions which are Lipschitz continuous away from a jump set which is a finite union of closed subsets of C1 hypersurfaces. The strains of the approximating functions converge strongly in L$$ to the strain of the target, and the area of their jump sets converge to the area of the target. The key idea is to use piecewise affine functions on a suitable grid, which is obtained via the Freudenthal partition of a cubic grid.
Conti, Sergio 1 ; Focardi, Matteo 1 ; Iurlano, Flaviana 1
@article{COCV_2019__25__A34_0, author = {Conti, Sergio and Focardi, Matteo and Iurlano, Flaviana}, title = {Approximation of fracture energies with p-growth via piecewise affine finite elements}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018021}, zbl = {1437.65182}, mrnumber = {4003465}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018021/} }
TY - JOUR AU - Conti, Sergio AU - Focardi, Matteo AU - Iurlano, Flaviana TI - Approximation of fracture energies with p-growth via piecewise affine finite elements JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018021/ DO - 10.1051/cocv/2018021 LA - en ID - COCV_2019__25__A34_0 ER -
%0 Journal Article %A Conti, Sergio %A Focardi, Matteo %A Iurlano, Flaviana %T Approximation of fracture energies with p-growth via piecewise affine finite elements %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018021/ %R 10.1051/cocv/2018021 %G en %F COCV_2019__25__A34_0
Conti, Sergio; Focardi, Matteo; Iurlano, Flaviana. Approximation of fracture energies with p-growth via piecewise affine finite elements. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 34. doi : 10.1051/cocv/2018021. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018021/
[1] Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 (1997) 201–238. | Zbl | MR | DOI
, and ,[2] Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). | Zbl | MR
, and ,[3] Existence of the displacement field for an elastoplastic body subject to Hencky’s law and von Mises yield condition. Manuscr. Math. 32 (1980) 101–136. | Zbl | MR | DOI
and ,[4] Compactness and lower semicontinuity properties in SBD(Ω). Math. Z. 228 (1998) 337–351. | Zbl | MR | DOI
, and ,[5] The variational approach to fracture. J. Elast. 91 (2008) 5–148. | Zbl | MR | DOI
, and ,[6] Integral representation results for functionals defined on SBV(Ω; Rm). J. Math. Pures Appl. (9) 75 (1996) 595–626. | Zbl | MR
and ,[7] Density of polyhedral partitions. Calc. Var. Part. Differ. Equ. 56 (2017) 28. | Zbl | MR | DOI
, and ,[8] A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167 (2003) 211–233. | Zbl | MR | DOI
,[9] An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 83 (2004) 929–954. | Zbl | MR | DOI
,[10] Addendum to: “An approximation result for special functions with bounded deformation” [J. Math. Pures Appl. 83 (2004) 929–954]. J. Math. Pures Appl. 84 (2005) 137–145. | Zbl | MR | DOI
,[11] A Density Result in GSBDp with Applications to the Approximation of Brittle Fracture Energies. Arch. Ration. Mech. Anal. 232 (2019) 1329–1378. | Zbl | MR | DOI
and ,[12] Korn-Poincaré inequalities for functions with a small jump set. Indiana Univ. Math. J. 65 (2016) 1373–1399. | Zbl | MR | DOI
, and ,[13] Approximation of a brittle fracture energy with a constraint of non-interpenetration. Arch. Ration. Mech. Anal. 228 (2018) 867–889. | Zbl | MR | DOI
, and ,[14] Existence of minimizers for the 2d stationary Griffith fracture model. C. R. Acad. Sci. Paris Ser. I 354 (2016) 1055–1059. | Zbl | MR | DOI
, and ,[15] Existence of Strong Minimizers for the Griffith Static Fracture Model in Dimension Two. Preprint (2016). | arXiv | MR
, and ,[16] Integral representation for functionals defined on SBDp in dimension two. Arch. Ration. Mech. Anal. 223 (2017) 1337–1374. | Zbl | MR | DOI
, and ,[17] A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems. Preprint (2018). | arXiv | MR
, and ,[18] Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII (N.S.) 43 (1997) 27–49 (1998). | Zbl | MR | DOI
,[19] A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38 (1999) 585–604. | Zbl | MR | DOI
and ,[20] Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS) 15 (2013) 1943–1997. | Zbl | MR | DOI
,[21] Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218. | Zbl | MR | DOI
, and ,[22] Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | Zbl | MR | DOI
and ,[23] A Korn-Poincaré-type Inequality for Special Functions of Bounded Deformation. Preprint (2015). | arXiv
,[24] A Korn-type Inequality in SBD for Functions with Small Jump Sets. Preprint (2015). | arXiv | MR
,[25] A Course on Nonlinear Fracture Mechanics. Department of Solid Mechanics, Techn. University of Denmark (1989).
,[26] A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Equ. 51 (2014) 315–342. | Zbl | MR | DOI
,[27] Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10 (1983) 1–35. | Zbl | MR | DOI
and ,[28] Sur un nouveau cadre fonctionnel pour les équations de la plasticité. C. R. Acad. Sci. Paris Sér. A-B 286 (1978) A1129–A1132. | Zbl | MR
,[29] Problèmes mathématiques en plasticité. Vol. 12 of Méthodes Mathématiques de l’Informatique. Gauthier-Villars, Montrouge (1983). | Zbl | MR
,[30] Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980) 7–21. | Zbl | MR | DOI
and ,Cité par Sources :