Voir la notice de l'article provenant de la source Numdam
In this paper, we first introduce an abstract viscous hyperbolic problem for which we prove exponential decay under appropriated assumptions. We then give some illustrative examples, like the linearized viscous Saint-Venant system. In order to achieve the optimal decay rate, we also perform a detailed spectral analysis of our abstract problem under a natural assumption satisfied by various examples. We finally consider the boundary stabilizability of the linearized viscous Saint-Venant system on trees.
Nicaise, Serge 1
@article{COCV_2019__25__A33_0, author = {Nicaise, Serge}, title = {Stability results of some first order viscous hyperbolic systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018020}, zbl = {1441.35055}, mrnumber = {4001033}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018020/} }
TY - JOUR AU - Nicaise, Serge TI - Stability results of some first order viscous hyperbolic systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018020/ DO - 10.1051/cocv/2018020 LA - en ID - COCV_2019__25__A33_0 ER -
%0 Journal Article %A Nicaise, Serge %T Stability results of some first order viscous hyperbolic systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018020/ %R 10.1051/cocv/2018020 %G en %F COCV_2019__25__A33_0
Nicaise, Serge. Stability results of some first order viscous hyperbolic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 33. doi : 10.1051/cocv/2018020. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018020/
[1] A characterisation of generalized c∞ notion on nets. Integr. Equ. Oper. Theory 9 (1986) 753–766. | Zbl | MR | DOI
,[2] Nonlinear Wave in Networks. Vol. 80 of Math. Res. Akademie Verlag (1994). | Zbl | MR
,[3] Stabilization of Elastic Systems by Collocated Feedback. Vol. 2124 of Lecture Notes in Mathematics. Springer, Cham (2015). | Zbl | MR | DOI
and ,[4] Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | Zbl | MR | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
, , and ,[5] Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete Contin. Dyn. Syst. Ser. B 15 (2011) 491–511. | Zbl | MR
, , and ,[6] Stability and Boundary Stabilization of 1-D Hyperbolic Systems. PNLDE Subseries in Control. Birkhäuser, Basel (2016). | MR | DOI
and ,[7] On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterog. Media 4 (2009) 177–187. | Zbl | MR | DOI
, and ,[8] A characteristic equation associated to an eigenvalue problem on c2-networks. Linear Algebra Appl. 71 (1985) 309–325. | Zbl | MR | DOI
,[9] Classical solvability of linear parabolic equations on networks. J. Differ. Equ. 72 (1988) 316–337. | Zbl | MR | DOI
,[10] Sturm-Liouville eigenvalue problems on networks. Math. Methods Appl. Sci. 10 (1988) 383–395. | Zbl | MR | DOI
,[11] Introduction to Quantum Graphs. Vol. 186 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2013). | Zbl | MR
and ,[12] Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). | Zbl | MR | DOI
,[13] Controllability and stabilizability of the linearized compressible Navier-Stokes system in one dimension. SIAM J. Control Optim. 50 (2012) 2959–2987. | Zbl | MR | DOI
, and ,[14] Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | Zbl | MR
,[15] The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19 (1994) 213–243. | Zbl | MR | DOI
and ,[16] Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures. Vol. 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin (2006). | Zbl | MR | DOI
and ,[17] Mathematical Analysis and Numerical Methods for Science and Technology. In Vol. 3 of Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson. Springer-Verlag, Berlin (1990). | Zbl | MR
and ,[18] Introduction à quelques problèmes d’EDP. Notes du groupe de travail de l’équipe EDP du Laboratoire de Mathématiques et leurs Applications de Valenciennes. Editions universitaires européennes (2014).
and ,[19] Boundary feedback control in networks of open channels. Autom. J. IFAC 39 (2003) 1365–1376. | Zbl | MR | DOI
, , , and ,[20] Etude des équations de la magnéto-hydrodynamique stationnaire et de leur approximation par éléments finis. Thèse de 3eme cycle, Université Pierre et Marie Curie (1982).
,[21] Viscous potential free-surface flows in a fluid layer of finite depth. C. R. Math. Acad. Sci. Paris 345 (2007) 113–118. | Zbl | MR | DOI
and ,[22] Les inéquations en mécanique et en physique. Travaux et Recherches Mathématiques, No. 21, Dunod, Paris (1972). | Zbl | MR
and ,[23] Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245 (2008) 2660–2703. | Zbl | MR | DOI
and ,[24] Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978) 28–63. | Zbl | MR | mathdoc-id
and ,[25] Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). | Zbl | MR | DOI
and ,[26] Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44 (1995) 603–676. | Zbl | MR | DOI
and ,[27] Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56. | Zbl | MR
,[28] Boundary stabilization, observation and control of Maxwell’s equations. PanAm. Math. J. 4 (1994) 47–61. | Zbl | MR
,[29] Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures. Birkhäuser, Boston (1994). | Zbl | MR | DOI
, and ,[30] Derivation of a viscous Boussinesq system for surface water waves. Asymptot. Anal. 94 (2015) 309–345. | Zbl | MR
,[31] On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41 (2002) 164–180. | Zbl | MR | DOI
and ,[32] Connecting of local operators and evolution equations on networks, in Potential Theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979). Vol. 787 of Lecture Notes in Math. Springer, Berlin (1980) 219–234. | Zbl | MR | DOI
,[33] Finite element methods for Maxwell’s equations. Numerical Analysis and Scientific Computation Series Oxford Univ. Press, New York (2003). | Zbl | MR
,[34] On a Lp-estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions. J. Differ. Equ. 186 (2002) 377–393. | Zbl | MR | DOI
and ,[35] Spectre des réseaux topologiques finis. Bull. Sc. Math., 2ème série 111 (1987) 401–413. | Zbl | MR
,[36] Exact boundary controllability of Maxwell’s equations in heterogeneous media and an application to an inverse source problem. SIAM J. Control Optim. 38 (2000) 1145–1170. | Zbl | MR | DOI
,[37] Finite-time stabilization of 2 × 2 hyperbolic systems on tree-shaped networks. SIAM J. Control Optim. 52 (2014) 143–163. | Zbl | MR | DOI
and ,[38] Contrôle et stabilisation d’ondes électromagnétiques. ESAIM: COCV 5 (2000) 87–137. | Zbl | MR | mathdoc-id
,[39] Observability and controllability of Maxwell’s equations. Rend. Mat. Appl. 19 (1999) 523–546. | Zbl | MR
,[40] On the spectrum of C0-semigroups. Trans. Amer. Math. Soc. 284 (1984) 847–857. | Zbl | MR
,[41] About the resolvent of an operator from fluid dynamics. Math. Z. 194 (1987) 183–191. | Zbl | MR | DOI
,Cité par Sources :