The minimal resistance problem in a class of non convex bodies
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 27.

Voir la notice de l'article provenant de la source Numdam

We characterize the solution to the Newton minimal resistance problem in a class of radial q-concave profiles. We also give the corresponding result for one-dimensional profiles. Moreover, we provide a numerical optimization algorithm for the general nonradial case.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018016
Classification : 49Q10, 49K30
Keywords: Newton minimal resistance problem, shape optimization

Mainini, Edoardo 1 ; Monteverde, Manuel 1 ; Oudet, Edouard 1 ; Percivale, Danilo 1

1
@article{COCV_2019__25__A27_0,
     author = {Mainini, Edoardo and Monteverde, Manuel and Oudet, Edouard and Percivale, Danilo},
     title = {The minimal resistance problem in a class of non convex bodies},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018016},
     zbl = {1439.49078},
     mrnumber = {3989206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018016/}
}
TY  - JOUR
AU  - Mainini, Edoardo
AU  - Monteverde, Manuel
AU  - Oudet, Edouard
AU  - Percivale, Danilo
TI  - The minimal resistance problem in a class of non convex bodies
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018016/
DO  - 10.1051/cocv/2018016
LA  - en
ID  - COCV_2019__25__A27_0
ER  - 
%0 Journal Article
%A Mainini, Edoardo
%A Monteverde, Manuel
%A Oudet, Edouard
%A Percivale, Danilo
%T The minimal resistance problem in a class of non convex bodies
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018016/
%R 10.1051/cocv/2018016
%G en
%F COCV_2019__25__A27_0
Mainini, Edoardo; Monteverde, Manuel; Oudet, Edouard; Percivale, Danilo. The minimal resistance problem in a class of non convex bodies. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 27. doi : 10.1051/cocv/2018016. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018016/

[1] BlackBoxOptim.jl, A global optimization framework for Julia. Available at: https://github.com/robertfeldt/BlackBoxOptim.jl. (2019)

[2] F. Brock, V. Ferone and B. Kawohl, A symmetry problem in the calculus of variations. Calc. Var. Partial Diff. Equ. 4 (1996) 593–599. | Zbl | MR | DOI

[3] G. Buttazzo, A survey on the Newton problem of optimal profiles, in Variational Analysis and Aerospace Engineering. Vol. 33 of Optimization and Its Applications. Springer (2009) 33–48. | Zbl | MR

[4] G. Buttazzo and P. Guasoni, Shape optimization problems over classes of convex domains. J. Convex Anal. 4 (1997) 343–351. | Zbl | MR

[5] G. Buttazzo and B. Kawohl, On Newton’s problem of minimal resistance. Math. Intell. 15 (1993) 7–12. | Zbl | MR | DOI

[6] G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions. Math. Nachr. 173 (1995) 71–89. | Zbl | MR | DOI

[7] M. Comte and T. Lachand-Robert, Newton’s problem of the body of minimal resistance under a single-impact assumption. Calc. Var. Partial Diff. Equ. 12 (2001) 173–211. | Zbl | MR | DOI

[8] M. Comte and T. Lachand-Robert, Existence of minimizers for the Newton’s problem of the body of minimal resistance under a single-impact assumption. J. Anal. Math. 83 (2001) 313–335. | Zbl | MR | DOI

[9] H.H. Goldstine, A History of the Calculus of Variations from the 17th Through the 19th Century. Springer-Verlag, Heidelberg (1980). | Zbl | MR

[10] T. Lachand-Robert and É. Oudet, Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16 (2005) 368–379. | Zbl | MR | DOI

[11] T. Lachand-Robert and M.A. Peletier, Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226 (2001) 153–176. | Zbl | MR | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] E. Mainini, M. Monteverde, E. Oudet and D. Percivale, Newton’s aerodynamic for non convex bodies. Rend. Lincei Mat. Appl. 28 (2017) 885–896. | Zbl | MR

[13] P. Marcellini, Nonconvex integrals of the calculus of variations, in Methods of Nonconvex Analysis (Varenna, 1989). Vol. 1446 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1990) 16–57. | Zbl | MR | DOI

[14] A. Plakhov, The problem of minimal resistance for functions and domains. SIAM J. Math. Anal. 46 (2014) 2730–2742. | Zbl | MR | DOI

[15] A. Plakhov, Newton’s problem of minimal resistance under the single impact assumption. Nonlinearity 29 (2016) 465–488. | Zbl | MR | DOI

Cité par Sources :