A perfect reconstruction property for PDE-constrained total-variation minimization with application in Quantitative Susceptibility Mapping
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 83.

Voir la notice de l'article provenant de la source Numdam

We study the recovery of piecewise constant functions of finite bounded variation (BV) from their image under a linear partial differential operator with unknown boundary conditions. It is shown that minimizing the total variation (TV) semi-norm subject to the associated PDE-constraints yields perfect reconstruction up to a global constant under a mild geometric assumption on the jump set of the function to reconstruct. The proof bases on establishing a structural result about the jump set associated with BV-solutions of the homogeneous PDE. Furthermore, we show that the geometric assumption is satisfied up to a negligible set of orthonormal transformations. The results are then applied to Quantitative Susceptibility Mapping (QSM) which can be formulated as solving a two-dimensional wave equation with unknown boundary conditions. This yields in particular that total variation regularization is able to reconstruct piecewise constant susceptibility distributions, explaining the high-quality results obtained with TV-based techniques for QSM.

DOI : 10.1051/cocv/2018009
Classification : 35Q93, 49Q20, 35L67, 92C55
Keywords: Optimization with partial differential equations, total-variation minimization, perfect reconstruction property, piecewise constant functions of bounded variation, jump sets of BV-solutions, Quantitative Susceptibility Mapping

Bredies, Kristian 1 ; Vicente, David 1

1
@article{COCV_2019__25__A83_0,
     author = {Bredies, Kristian and Vicente, David},
     title = {A perfect reconstruction property for {PDE-constrained} total-variation minimization with application in {Quantitative} {Susceptibility} {Mapping}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018009},
     zbl = {1437.35680},
     mrnumber = {4043861},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018009/}
}
TY  - JOUR
AU  - Bredies, Kristian
AU  - Vicente, David
TI  - A perfect reconstruction property for PDE-constrained total-variation minimization with application in Quantitative Susceptibility Mapping
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018009/
DO  - 10.1051/cocv/2018009
LA  - en
ID  - COCV_2019__25__A83_0
ER  - 
%0 Journal Article
%A Bredies, Kristian
%A Vicente, David
%T A perfect reconstruction property for PDE-constrained total-variation minimization with application in Quantitative Susceptibility Mapping
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018009/
%R 10.1051/cocv/2018009
%G en
%F COCV_2019__25__A83_0
Bredies, Kristian; Vicente, David. A perfect reconstruction property for PDE-constrained total-variation minimization with application in Quantitative Susceptibility Mapping. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 83. doi : 10.1051/cocv/2018009. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018009/

[1] B. Adcock and A.C. Hansen, A generalized sampling theorem for stable reconstructions in arbitrary bases. J. Fourier Anal. Appl. 18 (2012) 685–716. | Zbl | MR | DOI

[2] B. Adcock and A.C. Hansen, Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 32 (2012) 357–388. | Zbl | MR | DOI

[3] B. Adcock, A.C. Hansen and C. Poon, On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate. Appl. Comput. Harmon. Anal. 36 (2014) 387–415. | Zbl | MR | DOI

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000). | Zbl | MR | DOI

[5] M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for optimal control problems. SIAM J. Control Optim. 37 (1999) 1176–1194. | Zbl | MR | DOI

[6] J. Bochnak, M. Coste and M.F. Roy, Real Algebraic geometry. Springer (1998). | Zbl | MR | DOI

[7] K. Bredies, Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. Lecture Notes Comput. Sci. 8293 (2014) 44–77. | DOI

[8] K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation constraints. In Proceedings of SampTA 2011 – 9th International Conference on Sampling Theory and Applications. Singapore (2011).

[9] K. Bredies and M. Holler, Regularization of linear inverse problems with Total Generalized Variation. J. Inverse Ill-posed Probl. 22 (2014) 871–913. | Zbl | MR | DOI

[10] K. Bredies, K. Kunisch and T. Pock, Total Generalized Variation. SIAM J. Imag. Sci. 3 (2010) 492–526. | Zbl | MR | DOI

[11] K. Bredies, C. Langkammer and D. Vicente, TGV-based single-step QSM reconstruction with coil combination. In 4th International Workshop on MRI Phase Constrast and Quantitative Susceptibility Mapping. Medical University of Graz (2016).

[12] E.J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67 (2014) 906–956. | Zbl | MR | DOI

[13] E.J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52 (2006) 489–509. | Zbl | MR | DOI

[14] V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Modeling Simul. 6 (2007) 879–894. | Zbl | MR | DOI

[15] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vision 40 (2011) 120–145. | Zbl | MR | DOI

[16] A. Chambolle, V. Duval, G. Peyré and C. Poon, Geometric properties of solutions to the total variation denoising problem. Inverse Probl. 33 (2016) 015002. | Zbl | MR | DOI

[17] I. Chatnuntawech, P. Mcdaniel, S.F. Cauley, B.A. Gagoski, C. Langkammer, A. Martin, P.E. Grant, L.L. Wald, K. Setsompop, E. Adalsteinsson and B. Bilgic, Single-step quantitative susceptibility mapping with variational penalties. NMR Biomed. (2016).

[18] J.K. Choi, H.S. Park, S. Wang and J.K. Seo, Inverse problem in quantitative susceptibility mapping. SIAM J. Imag. Sci. 7 (2014) 1669–1689. | Zbl | MR | DOI

[19] L. De Rochefort, R. Brown, M. Prince and Y. Wang, Quantitative MR susceptibility mapping using piecewise constant regularized inversion of the magnetic field. Magn. Res. Med. 60 (2008) 1003–1009. | DOI

[20] G. De Philippis and F. Rindler, On the structure of 𝒜-free measures and applications. Ann. Math. 184 (2016) 1017–1039. | Zbl | MR | DOI

[21] V. Duval and G. Peyré, Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15 (2015) 1315–1355. | Zbl | MR | DOI

[22] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (1992). | Zbl | MR

[23] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2 (2009) 323–343. | Zbl | MR | DOI

[24] E.M. Haacke, R.W. Brown, M.R. Thompson and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design. John Wiley and Sons, New York (1999).

[25] E.M. Haacke, N.Y. Cheng, M.J. House, Q. Liu, J. Neelavalli, R.J. Ogg, A. Khan, M. Ayaz, W. Kirsch and A. Obenaus, Imaging iron stores in the brain using magnetic resonance imaging. Magn. Res. Imag. 23 (2005) 1–25. | DOI

[26] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2006) 865–888. | Zbl | MR | DOI

[27] L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, 2nd edition. Springer Verlag, Berlin (1990). | Zbl | MR

[28] C. Langkammer, K. Bredies, B.A. Poser, M. Barth, G. Reishofer, A.P. Fan, B. Bilgic, F. Fazekas, C. Mainero and S. Ropele, Fast Quantitative Susceptibility Mapping using 3D EPI and Total Generalized Variation. NeuroImage 111 (2015) 622–630. | DOI

[29] C. Li, W. Yin and Y. Zhang, TVAL3: TV minimization by Augmented Lagrangian and ALternating direction ALgorithms. Available at: http://www.caam.rice.edu/~optimization/L1/TVAL3/ (2019).

[30] C. Meyer, A. Rösch and F. Tröltzsch, Optimal control problems of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209–228. | Zbl | MR | DOI

[31] W. Rossmann, Lie groups: an introduction through linear groups. Oxford University Press (2002). | Zbl | MR | DOI

[32] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259–268. | Zbl | MR | DOI

[33] F. Schweser, S.D. Robinson, L. De Rochefort, W. Li and K. Bredies, An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest. NMR Biomed. 30 (2017). | DOI

[34] F. Tröltzsch, Optimal control of partial differential equations. Americal Mathematical Society (2010). | Zbl | MR

[35] Y. Wang and T. Liu, Quantitative Susceptibility Mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn. Res. Med. 73 (2015) 82–101. | DOI

[36] Y. Zhang, W. Deng, J. Yang and W. Yin, YALL1: Your ALgorithms for L1. Available at: http://yall1.blogs.rice.edu/ (2019).

Cité par Sources :