An isoperimetric problem with a Coulombic repulsion and attractive term
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 14.

Voir la notice de l'article provenant de la source Numdam

We study an energy given by the sum of the perimeter of a set, a Coulomb repulsion term of the set with itself and an attraction term of the set to a point charge. We prove that there exists an optimal radius r0 such that if r < r0 the ball B$$ is a local minimizer with respect to any other set with same measure. The global minimality of balls is also addressed.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018008
Classification : 49Q20
Keywords: Isoperimetric inequality, Coulombic potential

La Manna, Domenico Angelo 1

1
@article{COCV_2019__25__A14_0,
     author = {La Manna, Domenico Angelo},
     title = {An isoperimetric problem with a {Coulombic} repulsion and attractive term},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018008},
     zbl = {1444.49016},
     mrnumber = {3963665},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018008/}
}
TY  - JOUR
AU  - La Manna, Domenico Angelo
TI  - An isoperimetric problem with a Coulombic repulsion and attractive term
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018008/
DO  - 10.1051/cocv/2018008
LA  - en
ID  - COCV_2019__25__A14_0
ER  - 
%0 Journal Article
%A La Manna, Domenico Angelo
%T An isoperimetric problem with a Coulombic repulsion and attractive term
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018008/
%R 10.1051/cocv/2018008
%G en
%F COCV_2019__25__A14_0
La Manna, Domenico Angelo. An isoperimetric problem with a Coulombic repulsion and attractive term. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 14. doi : 10.1051/cocv/2018008. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018008/

[1] E. Acerbi, N. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322 (2013) 515–557. | Zbl | MR | DOI

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | Zbl | MR | DOI

[3] V. Bögelein, F. Duzaar and N. Fusco, A sharp quantitative isoperimetric inequality in higher codimension. Rend. Lincei. Mat. Appl. 26 (2015) 309–362. | Zbl | MR

[4] L. Brasco, G. De Philippis and B. Velichkov, Faber-Krahn inequalities in sharp quantitative form. Duke Math. J. 164 (2016) 1777–1832. | Zbl | MR

[5] M. Cicalese and G.P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206 (2012) 617–643. | Zbl | MR | DOI

[6] A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336 (2015) 441–507. | Zbl | MR | DOI

[7] R.L. Frank, R. Killip and P.T. Nam, Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106 (2016) 1033–1036. | Zbl | MR | DOI

[8] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in ℝn. Trans. Am. Math. Soc. 314 (1989) 619–638. | Zbl | MR

[9] N. Fusco, The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5 (2015) 517–607. | Zbl | MR | DOI

[10] N. Fusco and V. Julin, A strong form of the quantitative isoperimetric inequality. Calc. Var. Partial Differ. Equ. 50 (2014) 925–937. | Zbl | MR | DOI

[11] V. Julin, Isoperimetric problem with a Coulombic repulsive term. Indiana Univ. Math. J. 63 (2014) 77–89. | Zbl | MR | DOI

[12] H. Knüpfer and C.B. Muratov, On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math. 67 (2014) 1974–1994. | Zbl | MR | DOI

[13] J. Lu and F. Otto, Nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Commun. Pure Appl. Math. 67 (2014) 1605–1617. | Zbl | MR | DOI

[14] J. Lu and F. Otto, An Isoperimetric Problem With Coulomb Repulsion and Attraction to a Background Nucleus. Preprint (2015). | arXiv

[15] F. Maggi, An introduction to geometric measure theory, in Sets of finite perimeter and geometric variational problems. Vol. 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012). | Zbl | MR

[16] C.B. Muratov and A. Zaleski, On an isoperimetric problem with a competing non-local term: quantitative results. Ann. Global Anal. Geom. 47 (2015) 63–80. | Zbl | MR | DOI

[17] I. Tamanini, Regularity results for almost minimal oriented hypersurfaces. Quad. Mat. 1 (1984) 1–92. | Zbl

Cité par Sources :