Hamilton-Jacobi equations for optimal control on networks with entry or exit costs
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 15.

Voir la notice de l'article provenant de la source Numdam

We consider an optimal control on networks in the spirit of the works of Achdou et al. [NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 413–445] and Imbert et al. [ESAIM: COCV 19 (2013) 129–166]. The main new feature is that there are entry (or exit) costs at the edges of the network leading to a possible discontinuous value function. We characterize the value function as the unique viscosity solution of a new Hamilton-Jacobi system. The uniqueness is a consequence of a comparison principle for which we give two different proofs, one with arguments from the theory of optimal control inspired by Achdou et al. [ESAIM: COCV 21 (2015) 876–899] and one based on partial differential equations techniques inspired by a recent work of Lions and Souganidis [Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 535–545].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018003
Classification : 34H05, 35F21, 49L25, 49J15, 49L20, 93C30
Keywords: Optimal control, networks, Hamilton-Jacobi equation, viscosity solutions, uniqueness, switching cost

Dao, Manh Khang 1

1
@article{COCV_2019__25__A15_0,
     author = {Dao, Manh Khang},
     title = {Hamilton-Jacobi equations for optimal control on networks with entry or exit costs},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018003},
     zbl = {1437.49041},
     mrnumber = {3963664},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018003/}
}
TY  - JOUR
AU  - Dao, Manh Khang
TI  - Hamilton-Jacobi equations for optimal control on networks with entry or exit costs
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018003/
DO  - 10.1051/cocv/2018003
LA  - en
ID  - COCV_2019__25__A15_0
ER  - 
%0 Journal Article
%A Dao, Manh Khang
%T Hamilton-Jacobi equations for optimal control on networks with entry or exit costs
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018003/
%R 10.1051/cocv/2018003
%G en
%F COCV_2019__25__A15_0
Dao, Manh Khang. Hamilton-Jacobi equations for optimal control on networks with entry or exit costs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 15. doi : 10.1051/cocv/2018003. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018003/

[1] Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations on networks. IFAC Proc. 44 (2011) 2577–2582.

[2] Y. Achdou, F. Camilli, A. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks. NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 413–445. | Zbl | MR | DOI

[3] Y. Achdou, S. Oudet and N. Tchou, Hamilton-Jacobi equations for optimal control on junctions and networks. ESAIM: COCV 21 (2015) 876–899. | Zbl | MR | mathdoc-id

[4] G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit. Nonlinear Anal. 20 (1993) 1123–1134. | Zbl | MR | DOI

[5] G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Vol. 2074 of Lecture Notes in Mathematics. Springer, Heidelberg (2013) 49–109. | Zbl | MR | DOI

[6] G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in ℝN. ESAIM: COCV 19 (2013) 710–739. | Zbl | MR | mathdoc-id

[7] G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in ℝN. SIAM J. Control Optim. 52 (2014) 1712–1744. | Zbl | MR | DOI

[8] A.-P. Blanc, Deterministic exit time control problems with discontinuous exit costs. SIAM J. Control Optim. 35 (1997) 399–434. | Zbl | MR | DOI

[9] A.-P. Blanc, Comparison principle for the Cauchy problem for Hamilton-Jacobi equations with discontinuous data. Nonlinear Anal. 45 (2001) 1015–1037. | Zbl | MR | DOI

[10] F. Camilli and C. Marchi, A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks. J. Math. Anal. Appl. 407 (2013) 112–118. | Zbl | MR | DOI

[11] I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318 (1990) 643–683. | Zbl | MR | DOI

[12] K.-J. Engel, M. Kramar Fijavvz, R. Nagel and E. Sikolya, Vertex control of flows in networks. Netw. Heterog. Media 3 (2008) 709–722. | Zbl | MR | DOI

[13] H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints. Calc. Var. Partial Differ. Equ. 46 (2013) 725–747. | Zbl | MR | DOI

[14] M. Garavello and B. Piccoli, Conservation laws models, in Traffic Flow on Networks. Vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). | Zbl | MR

[15] P. J. Graber, C. Hermosilla and H. Zidani, Discontinuous solutions of Hamilton-Jacobi equations on networks. J. Differ. Equ. 263 (2017) 8418–8466. | Zbl | MR | DOI

[16] C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. Ann. Sci. Éc. Norm. Supér. 50 (2017) 357–448. | Zbl | MR | DOI

[17] C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows. ESAIM: COCV 19 (2013) 129–166. | Zbl | MR | mathdoc-id

[18] H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton-Jacobi equations, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Vol. 2074 of Lecture Notes in Mathematics Springer, Heidelberg (2013) 111–249. | Zbl | MR | DOI

[19] P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: well posedness and stability. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 535–545. | Zbl | MR

[20] P.-L. Lions and P. Souganidis, Well Posedness for Multi-dimensional Junction Problems With Kirchoff-Type Conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017) 807–816. | Zbl | MR

[21] S. Oudet, Hamilton-Jacobi Equations for Optimal Control on Multidimensional Junctions. Preprint (2014). | arXiv

[22] D. Schieborn and F. Camilli, Viscosity solutions of Eikonal equations on topological networks. Calc. Var. Partial Differ. Equ. 46 (2013) 671–686. | Zbl | MR | DOI

[23] H.M. Soner, Optimal control with state-space constraint. I. SIAM J. Control Optim. 24 (1986) 552–561. | Zbl | MR | DOI

[24] H.M. Soner, Optimal control with state-space constraint. II. SIAM J. Control Optim. 24 (1986) 1110–1122. | Zbl | MR | DOI

Cité par Sources :