Voir la notice de l'article provenant de la source Numdam
In this article we prove that the codimension of the abnormal set of the endpoint map for certain classes of Carnot groups of step 2 is at least three. Our result applies to all step 2 Carnot groups of dimension up to 7 and is a generalisation of a previous analogous result for step 2 free nilpotent groups.
Ottazzi, Alessandro 1 ; Vittone, Davide 1
@article{COCV_2019__25__A18_0, author = {Ottazzi, Alessandro and Vittone, Davide}, title = {On the codimension of the abnormal set in step two {Carnot} groups}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018002}, zbl = {1444.53024}, mrnumber = {3981990}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018002/} }
TY - JOUR AU - Ottazzi, Alessandro AU - Vittone, Davide TI - On the codimension of the abnormal set in step two Carnot groups JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018002/ DO - 10.1051/cocv/2018002 LA - en ID - COCV_2019__25__A18_0 ER -
%0 Journal Article %A Ottazzi, Alessandro %A Vittone, Davide %T On the codimension of the abnormal set in step two Carnot groups %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018002/ %R 10.1051/cocv/2018002 %G en %F COCV_2019__25__A18_0
Ottazzi, Alessandro; Vittone, Davide. On the codimension of the abnormal set in step two Carnot groups. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 18. doi : 10.1051/cocv/2018002. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2018002/
[1] Any sub-Riemannian metric has points of smoothness. Dokl. Akad. Nauk 424 (2009) 295–298 | Zbl | MR
,[2] Some open problems, in Geometric Control Theory and Sub-Riemannian Geometry. Vol. 5 of Springer INdAM Series (2014) 1–14 | Zbl | MR
,[3] Geodesics and horizontal-path spaces in Carnot groups. Geom. Topol. 19 (2015) 1569–1630 | Zbl | MR | DOI
, and ,[4] Carnot-Carathéodory spaces seen from within, in Sub-Riemannian Geometry. Vol. 144 of Progress in Mathematics. Birkhäuser, Basel (1996) 79-323 | Zbl | MR
,[5] Sard property for the endpoint map on some Carnot groups. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 1639–1666 | Zbl | MR | mathdoc-id | DOI
, , , and ,[6] A Tour of Subriemannian Geometries, Their Geodesics and Applications. Vol. 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002) | Zbl | MR
,[7] Morse-Sard type results in sub- Riemannian geometry. Math. Ann. 332 (2005) 145–159 | Zbl | MR | DOI
and ,Cité par Sources :