Voir la notice de l'article provenant de la source Numdam
We study the minimization of convex, variational integrals of linear growth among all functions in the Sobolev space W1,1 with prescribed boundary values (or its equivalent formulation as a boundary value problem for a degenerately elliptic Euler–Lagrange equation). Due to insufficient compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard way by the direct method in the calculus of variations and in fact might fail, as it is well-known already for the non-parametric minimal surface problem. Assuming radial structure, we establish a necessary and sufficient condition on the integrand such that the Dirichlet problem is in general solvable, in the sense that a Lipschitz solution exists for any regular domain and all prescribed regular boundary values, via the construction of appropriate barrier functions in the tradition of Serrin’s paper [J. Serrin, Philos. Trans. R. Soc. Lond., Ser. A 264 (1969) 413–496].
Beck, Lisa 1 ; Bulíček, Miroslav 1 ; Maringová, Erika 1
@article{COCV_2018__24_4_1395_0, author = {Beck, Lisa and Bul{\'\i}\v{c}ek, Miroslav and Maringov\'a, Erika}, title = {Globally {Lipschitz} minimizers for variational problems with linear growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1395--1413}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017065}, zbl = {1418.35179}, mrnumber = {3922433}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/} }
TY - JOUR AU - Beck, Lisa AU - Bulíček, Miroslav AU - Maringová, Erika TI - Globally Lipschitz minimizers for variational problems with linear growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1395 EP - 1413 VL - 24 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/ DO - 10.1051/cocv/2017065 LA - en ID - COCV_2018__24_4_1395_0 ER -
%0 Journal Article %A Beck, Lisa %A Bulíček, Miroslav %A Maringová, Erika %T Globally Lipschitz minimizers for variational problems with linear growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1395-1413 %V 24 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/ %R 10.1051/cocv/2017065 %G en %F COCV_2018__24_4_1395_0
Beck, Lisa; Bulíček, Miroslav; Maringová, Erika. Globally Lipschitz minimizers for variational problems with linear growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1395-1413. doi : 10.1051/cocv/2017065. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/
[1] On the Dirichlet problem for variational integrals in BV . J. Reine Angew. Math. 674 (2013) 113–194 | Zbl | MR
and ,[2] Interior gradient regularity for BV -minimizers of singular variational problems. Nonl. Anal. 120 (2015) 86–106 | Zbl | MR | DOI
and ,[3] Sur les équations du calcul des variations. Ann. Sci. École Norm. Sup. 29 (1912) 431–485 | JFM | mathdoc-id | MR | DOI
,[4] A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth. J. Convex Anal. 9 (2002) 117–137 | Zbl | MR
,[5] Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Vol. 1818 of Lect. Notes Math. Berlin, Springer (2003) | Zbl | MR | DOI
,[6] Two dimensional variational problems with linear growth. Manuscripta Math. 110 (2003) 325–342 | Zbl | MR | DOI
,[7] On a class of variational integrals with linear growth satisfying the condition of μ-ellipticity. Rend. Mat. Appl., VII. Ser. 22 (2002) 249–274 | Zbl | MR
and ,[8] Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies. Calc. Var. Partial Differ. Equ. 54 (2015) 2115–2147 | Zbl | MR | DOI
, , and ,[9] Some characterizations of a uniform ball property. Congrès SMAI 2013. ESAIM: PROCs. 45 (2014) 437–446 | Zbl | MR
,[10] Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature. J. Anal. Math. 14 (1965) 139–160 | Zbl | MR | DOI
,[11] Full C1,α-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscripta Math. 102 (2000) 227–250 | Zbl | MR | DOI
and ,[12] Global C1,α-regularity for second order quasilinear elliptic equations in divergence form. J. Reine Angew. Math. 351 (1984) 55–65 | Zbl | MR
and ,[13] Functionals with linear growth in the calculus of variations I, II. Comment. Math. Univ. Carol. 20 (1979) 143–156, 157–172 | Zbl | MR
, and ,[14] Minimal surfaces and functions of bounded variation. Birkhäuser, Basel (1984) | Zbl | MR
,[15] Intégrale, longueur, aire. Thèse (1902) | JFM
,[16] Discussion d’un problème de Dirichlet. J. Math. Pures Appl. 18 (1939) 249–284 | JFM | mathdoc-id | MR
,[17] Nonlinear elliptic systems with general growth. J. Differ. Equ. 221 (2006) 412–443 | Zbl | MR | DOI
and ,[18] Full C1,α-regularity for minimizers of integral functionals with L log L-growth. Z. Anal. Anwend. 18 (1999) 1083–1100 | Zbl | MR | DOI
and ,[19] Un principio di massimo forte per le frontiere minimali e una sua applicazione alla risoluzione del problema al contorno per l’equazione delle superfici di area minima. Rend. Sem. Mat. Univ. Padova 45 (1971) 355–366 | Zbl | mathdoc-id | MR
,[20] Weak convergence of completely additive vector functions on a set. Sib. Math. J. 9 (1968) 1039–1045 | Zbl | MR | DOI
,[21] On the definition and properties of certain variational integrals. Trans. Am. Math. Soc. 101 (1961) 139–167 | Zbl | MR | DOI
,[22] The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. R.Soc. Lond. Ser. A 264 (1969) 413–496 | Zbl | MR | DOI
,Cité par Sources :