Globally Lipschitz minimizers for variational problems with linear growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1395-1413

Voir la notice de l'article provenant de la source Numdam

We study the minimization of convex, variational integrals of linear growth among all functions in the Sobolev space W1,1 with prescribed boundary values (or its equivalent formulation as a boundary value problem for a degenerately elliptic Euler–Lagrange equation). Due to insufficient compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard way by the direct method in the calculus of variations and in fact might fail, as it is well-known already for the non-parametric minimal surface problem. Assuming radial structure, we establish a necessary and sufficient condition on the integrand such that the Dirichlet problem is in general solvable, in the sense that a Lipschitz solution exists for any regular domain and all prescribed regular boundary values, via the construction of appropriate barrier functions in the tradition of Serrin’s paper [J. Serrin, Philos. Trans. R. Soc. Lond., Ser. A 264 (1969) 413–496].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017065
Classification : 35A01, 35B65, 35J70, 49N60
Keywords: Variational problems, linear growth, Lipschitz minimizers, non-convex domains

Beck, Lisa 1 ; Bulíček, Miroslav 1 ; Maringová, Erika 1

1
@article{COCV_2018__24_4_1395_0,
     author = {Beck, Lisa and Bul{\'\i}\v{c}ek, Miroslav and Maringov\'a, Erika},
     title = {Globally {Lipschitz} minimizers for variational problems with linear growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1395--1413},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017065},
     zbl = {1418.35179},
     mrnumber = {3922433},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/}
}
TY  - JOUR
AU  - Beck, Lisa
AU  - Bulíček, Miroslav
AU  - Maringová, Erika
TI  - Globally Lipschitz minimizers for variational problems with linear growth
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1395
EP  - 1413
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/
DO  - 10.1051/cocv/2017065
LA  - en
ID  - COCV_2018__24_4_1395_0
ER  - 
%0 Journal Article
%A Beck, Lisa
%A Bulíček, Miroslav
%A Maringová, Erika
%T Globally Lipschitz minimizers for variational problems with linear growth
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1395-1413
%V 24
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/
%R 10.1051/cocv/2017065
%G en
%F COCV_2018__24_4_1395_0
Beck, Lisa; Bulíček, Miroslav; Maringová, Erika. Globally Lipschitz minimizers for variational problems with linear growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1395-1413. doi: 10.1051/cocv/2017065

Cité par Sources :