Voir la notice de l'article provenant de la source Numdam
We study the minimization of convex, variational integrals of linear growth among all functions in the Sobolev space W1,1 with prescribed boundary values (or its equivalent formulation as a boundary value problem for a degenerately elliptic Euler–Lagrange equation). Due to insufficient compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard way by the direct method in the calculus of variations and in fact might fail, as it is well-known already for the non-parametric minimal surface problem. Assuming radial structure, we establish a necessary and sufficient condition on the integrand such that the Dirichlet problem is in general solvable, in the sense that a Lipschitz solution exists for any regular domain and all prescribed regular boundary values, via the construction of appropriate barrier functions in the tradition of Serrin’s paper [J. Serrin, Philos. Trans. R. Soc. Lond., Ser. A 264 (1969) 413–496].
Beck, Lisa 1 ; Bulíček, Miroslav 1 ; Maringová, Erika 1
@article{COCV_2018__24_4_1395_0, author = {Beck, Lisa and Bul{\'\i}\v{c}ek, Miroslav and Maringov\'a, Erika}, title = {Globally {Lipschitz} minimizers for variational problems with linear growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1395--1413}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017065}, zbl = {1418.35179}, mrnumber = {3922433}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/} }
TY - JOUR AU - Beck, Lisa AU - Bulíček, Miroslav AU - Maringová, Erika TI - Globally Lipschitz minimizers for variational problems with linear growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1395 EP - 1413 VL - 24 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/ DO - 10.1051/cocv/2017065 LA - en ID - COCV_2018__24_4_1395_0 ER -
%0 Journal Article %A Beck, Lisa %A Bulíček, Miroslav %A Maringová, Erika %T Globally Lipschitz minimizers for variational problems with linear growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1395-1413 %V 24 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017065/ %R 10.1051/cocv/2017065 %G en %F COCV_2018__24_4_1395_0
Beck, Lisa; Bulíček, Miroslav; Maringová, Erika. Globally Lipschitz minimizers for variational problems with linear growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1395-1413. doi: 10.1051/cocv/2017065
Cité par Sources :